cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117484 Number of triangular numbers mod n.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 4, 8, 4, 6, 6, 8, 7, 8, 6, 16, 9, 8, 10, 12, 8, 12, 12, 16, 11, 14, 11, 16, 15, 12, 16, 32, 12, 18, 12, 16, 19, 20, 14, 24, 21, 16, 22, 24, 12, 24, 24, 32, 22, 22, 18, 28, 27, 22, 18, 32, 20, 30, 30, 24, 31, 32, 16, 64, 21, 24, 34, 36, 24, 24, 36, 32, 37, 38, 22
Offset: 1

Views

Author

Keywords

Comments

Same as A000224 (number of squares mod n) for n odd, since there we can divide by 2 and then complete the square.
From David Morales Marciel, Jul 13 2015: (Start)
a(n) is also the total number of vertices of an n-gon that are a "final vertex" of a bouncing pattern representing the modulo-n series (an image of the bouncing pattern is included in the LINKS section). It is defined by the following algorithm:
(1) Define counter c=1.
(2) Start at any desired vertex.
(3) Mark the current vertex as a "final vertex".
(4) Advance clockwise c vertices.
(5) Set c=c+1.
(6) Repeat from (3).
The pattern of "final vertices" is cyclic: after some repetitions of steps (3)-(6), the marking of vertices is repeated and it is possible to count how many vertices of the n-gon contain a "final vertex" mark.
Examples: trivial case: a(n)=1 (one vertex is always a "final vertex"). From that point following the algorithm: a(2)=2 (segment, both vertices are a "final vertex"), a(3)=2 (triangle, only two vertices are "final vertex"), etc.
(End)

Examples

			When n=3, there is no triangular number which is congruent to 2 (mod 3) but only == 0 or 1 (mod 3), so a(3) = 2. - _Robert G. Wilson v_, Sep 16 2015
		

Crossrefs

Cf. A000224.

Programs

  • Maple
    a:= proc(n) local F, f;
    F:= ifactors(n)[2];
    mul(seq(`if`(f[1]=2, 2^f[2], floor(f[1]^(f[2]+1)/(2*f[1]+2))+1), f=F))
    end proc:
    map(a, [$1..100]); # Robert Israel, Jul 13 2015
  • Mathematica
    f[n_] := Block[{fi = FactorInteger@ n, k = t = 1}, lng = 1 + Length@ fi; While[k < lng, t = t*If[ fi[[k, 1]] == 2, 2^fi[[k, 2]], Floor[1 + fi[[k, 1]]^(fi[[k, 2]] + 1)/(2 + 2fi[[k, 1]]) ]]; k++]; t]; Array[f, 75] (* Robert G. Wilson v, Sep 16 2015, after Robert Israel *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^f[i,2], (f[i,1]^(f[i,2]+1)\(2*f[i,1] + 2)) + 1));} \\ Amiram Eldar, Sep 05 2023

Formula

Multiplicative with a(2^e) = 2^e, a(p^e) = floor(p^(e+1)/(2p+2))+1 for p > 2.