A117484 Number of triangular numbers mod n.
1, 2, 2, 4, 3, 4, 4, 8, 4, 6, 6, 8, 7, 8, 6, 16, 9, 8, 10, 12, 8, 12, 12, 16, 11, 14, 11, 16, 15, 12, 16, 32, 12, 18, 12, 16, 19, 20, 14, 24, 21, 16, 22, 24, 12, 24, 24, 32, 22, 22, 18, 28, 27, 22, 18, 32, 20, 30, 30, 24, 31, 32, 16, 64, 21, 24, 34, 36, 24, 24, 36, 32, 37, 38, 22
Offset: 1
Examples
When n=3, there is no triangular number which is congruent to 2 (mod 3) but only == 0 or 1 (mod 3), so a(3) = 2. - _Robert G. Wilson v_, Sep 16 2015
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 21.
- David Morales Marciel, Bouncing patterns of some modulo-n series (n-gons 3 to 14, 16, 17 and 27), according to the algorithm explained in the comments. Current sequence belongs to the bouncing pattern of the 3-gon sample (first at the top).
Crossrefs
Cf. A000224.
Programs
-
Maple
a:= proc(n) local F, f; F:= ifactors(n)[2]; mul(seq(`if`(f[1]=2, 2^f[2], floor(f[1]^(f[2]+1)/(2*f[1]+2))+1), f=F)) end proc: map(a, [$1..100]); # Robert Israel, Jul 13 2015
-
Mathematica
f[n_] := Block[{fi = FactorInteger@ n, k = t = 1}, lng = 1 + Length@ fi; While[k < lng, t = t*If[ fi[[k, 1]] == 2, 2^fi[[k, 2]], Floor[1 + fi[[k, 1]]^(fi[[k, 2]] + 1)/(2 + 2fi[[k, 1]]) ]]; k++]; t]; Array[f, 75] (* Robert G. Wilson v, Sep 16 2015, after Robert Israel *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^f[i,2], (f[i,1]^(f[i,2]+1)\(2*f[i,1] + 2)) + 1));} \\ Amiram Eldar, Sep 05 2023
Formula
Multiplicative with a(2^e) = 2^e, a(p^e) = floor(p^(e+1)/(2p+2))+1 for p > 2.
Comments