This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117485 #55 Jul 17 2025 17:53:48 %S A117485 1,2,5,10,18,30,49,74,110,158,221,302,407,536,698,896,1136,1424,1770, %T A117485 2176,2656,3216,3866,4616,5481,6466,7591,8866,10306,11926,13747,15778, %U A117485 18046,20566,23359,26446,29855,33600,37716,42224,47152,52528,58388,64752,71664 %N A117485 Expansion of x^9/((1-x)*(1-x^2)*(1-x^3))^2. %C A117485 Molien series for S_3 X S_3, cf. A001399. %C A117485 From _Gus Wiseman_, Apr 06 2019: (Start) %C A117485 Also the number of integer partitions of n with Durfee square of length 3. The Heinz numbers of these partitions are given by A307386. For example, the a(9) = 1 through a(13) = 18 partitions are: %C A117485 (333) (433) (443) (444) (544) %C A117485 (3331) (533) (543) (553) %C A117485 (3332) (633) (643) %C A117485 (4331) (3333) (733) %C A117485 (33311) (4332) (4333) %C A117485 (4431) (4432) %C A117485 (5331) (4441) %C A117485 (33321) (5332) %C A117485 (43311) (5431) %C A117485 (333111) (6331) %C A117485 (33322) %C A117485 (33331) %C A117485 (43321) %C A117485 (44311) %C A117485 (53311) %C A117485 (333211) %C A117485 (433111) %C A117485 (3331111) %C A117485 (End) %H A117485 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-3,0,6,0,-3,-2,1,2,-1). %H A117485 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %F A117485 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>20. - _Colin Barker_, Dec 12 2019 %F A117485 From _Hoang Xuan Thanh_, May 17 2025: (Start) %F A117485 a(n+3) = Sum_{x+2*y+3*z=n} x*y*z. %F A117485 a(n+3) = n*(n^2-1)*(3*n^2-67)/12960 - floor((n+1)/3)/27 + [n mod 2 = 0]*n/32 + [n mod 3 = 0]*n/27 where [] is the Iverson bracket. (End) %e A117485 As a cross-check, row sixteen of A115994 yields p(16) = 16 + 140 + 74 + 1. %p A117485 with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=3, stack): seq(count(subs(r=3, ZL), size=m), m=6..50) ; # _Zerinvary Lajos_, Jan 02 2008 %t A117485 CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3))^2,{x,0,50}],x] (* _Harvey P. Dale_, Oct 09 2011 *) %t A117485 durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; %t A117485 Table[Length[Select[IntegerPartitions[n],durf[#]==3&]],{n,0,30}] (* _Gus Wiseman_, Apr 06 2019 *) %o A117485 (Magma) n:=3; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // _N. J. A. Sloane_, Mar 10 2007 %o A117485 (PARI) Vec(x^9 / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^60)) \\ _Colin Barker_, Dec 12 2019 %o A117485 (PARI) a(n) = floor((3*n^5 - 45*n^4 + 200*n^3 - 180*n^2 - 363*n + 1600)/12960 + n/27*(n%3==0) - n/32*(n%2==0)) \\ _Hoang Xuan Thanh_, Jul 17 2025 %Y A117485 Column k=3 of A115994. %Y A117485 Cf. A000027 (for k=1), A006918 (for k=2), A117488, A117489, A001399, A117486. %Y A117485 Cf. A115720, A307386, A325164. %K A117485 nonn,easy %O A117485 9,2 %A A117485 _Alford Arnold_, Mar 22 2006 %E A117485 Entry revised by _N. J. A. Sloane_, Mar 10 2007