A117498 Optimal combination of binary and factor methods for finding an addition chain.
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 7, 5, 6, 6, 7, 6, 7, 7, 7, 6, 7, 7, 8, 7, 7, 8, 9, 6, 7, 7, 7, 7, 8, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 8, 9, 8, 9, 7, 8, 8, 9, 8, 8, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 7, 8, 8, 8, 8, 9, 8, 9, 8, 9
Offset: 1
Keywords
Examples
a(33)=6 because 6 = 1+a(32) < a(3)+a(11) = 2+5. a(36) = min(a(35)+1, a(2)+a(18), a(3)+a(12), a(4)+a(9), a(6)+a(6)) = min(1+7, 1+5, 2+4, 2+4, 3+3) = 6.
Links
- John M. Campbell, A binary version of the Mahler-Popken complexity function, arXiv:2403.20073 [math.NT], 2024. See pp. 5-6. See also Integers (2024) Vol. 24, Art. No. A94. See pp. 5-6.
- Math.Stackexchange, On the number of f-stable subsets, question posted by Alessandrod and answered by Qiaochu Yuan, June 23, 2024.
- Index to sequences related to the complexity of n
Formula
a(1)=0; a(n) = min(a(n-1)+1, min_{d|n, 1
Comments