This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117504 #13 Apr 21 2024 11:38:36 %S A117504 37,137,151,173,409,467,503,677,937,1091,1153,1229,1303,1409,1453, %T A117504 1471,1531,2137,2221,2251,2393,2503,2593,2633,2671,2797,2837,3001, %U A117504 3023,3089,3163 %N A117504 Prime at which the cumulative sum in A117503 is prime. %F A117504 Multiply consecutive primes by Pi, truncate to integer, sum until a prime sum is reached. %e A117504 In a(1)=37, the cumulative sum of primes 1-12 in A117503 has risen to 613, a prime -- 37 being the 12th prime to be multiplied by Pi, with integer of result added to previous results. %p A117504 Digits := 30 ; A117504 := proc(nmax) local a,pisum,p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a),ithprime(p-1)] ; break ; fi ; od : od : RETURN(a) ; end: a := A117504(30) ; # _R. J. Mathar_ %t A117504 Prime[#]&/@Flatten[Position[Accumulate[Table[Floor[Pi p],{p,Prime[Range[500]]}]],_?PrimeQ]] (* _Harvey P. Dale_, Jul 19 2023 *) %o A117504 (UBASIC) %o A117504 10 Ct=1 %o A117504 20 B=nxtprm(B) %o A117504 30 C=int(pi(B)) %o A117504 40 D=D+C %o A117504 41 print Ct,B,C,D %o A117504 50 if D=prmdiv(D) then print D:stop %o A117504 55 Ct=Ct+1 %o A117504 60 goto 20 %Y A117504 Cf. A117503. %K A117504 easy,nonn %O A117504 1,1 %A A117504 _Enoch Haga_, Mar 25 2006 %E A117504 Corrected by _R. J. Mathar_, Oct 26 2006