cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117507 Numerators of partial sums of the Brun series divided by 4.

This page as a plain text file.
%I A117507 #9 Feb 16 2025 08:33:00
%S A117507 2,23,3919,1400972,1332221503,2440266733544,9013120937567806,
%T A117507 47710925260763230958,503649376979113850651329,
%U A117507 5954610779280903922363948937,114594038963707117577230115067496
%N A117507 Numerators of partial sums of the Brun series divided by 4.
%C A117507 The Brun series is the sum over reciprocals of the (odd) twin primes (see the mathworld link).
%C A117507 The denominators divided by 5 are given in A117508.
%C A117507 A001359 gives the lesser of the twin primes (offset 1).
%C A117507 A006512 gives the greater of the twin primes (offset 1).
%C A117507 A029707=[2,3,5,7,10,..] gives the indices for the lesser of the (odd) twin primes (offset 0).
%C A117507 The proof that the partial sums of the Brun series have numerators divisible by 4 and denominators divisible by 5 can be given by induction.
%H A117507 W. Lang: <a href="/A117507/a117507.txt">Rationals and more.</a>
%H A117507 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BrunsConstant.html">Brun's Constant</a>
%F A117507 a(n)=numerator(r(n))/4, with r(n):=sum(1/ltp(k) + 1/(ltp(k)+2),k=1..n), n>=1, with ltp(k):=A001359(k) (lesser twin primes).
%e A117507 Rationals 4*A117507(n)/5*A117508(n): 8/15, 92/105, 15676/15015,
%e A117507 5603888/4849845, 5328886012/4360010655,...
%K A117507 nonn,easy,frac
%O A117507 1,1
%A A117507 _Wolfdieter Lang_, Apr 13 2006