cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117552 Largest partial sum of the increasingly ordered divisors of n, not exceeding n.

This page as a plain text file.
%I A117552 #24 Aug 05 2025 13:35:32
%S A117552 1,1,1,3,1,6,1,7,4,8,1,10,1,10,9,15,1,12,1,12,11,14,1,24,6,16,13,28,1,
%T A117552 27,1,31,15,20,13,25,1,22,17,30,1,33,1,40,33,26,1,36,8,43,21,46,1,39,
%U A117552 17,36,23,32,1,58,1,34,41,63,19,45,1,58,27,39,1,63,1,40,49,64,19,51,1,66
%N A117552 Largest partial sum of the increasingly ordered divisors of n, not exceeding n.
%H A117552 Antti Karttunen, <a href="/A117552/b117552.txt">Table of n, a(n) for n = 1..16384</a>
%H A117552 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%F A117552 a(n) = n - A109883(n). - _Ridouane Oudra_, Jan 25 2024
%e A117552 a(12)=10 because the increasingly ordered divisors of 12 are 1,2,3,4,6 and 12, with partial sums 1,3,6,10,16 and 28; the largest partial sum not exceeding 12 is 10.
%p A117552 with(numtheory): a:=proc(n) local div,j: if n=1 then 1 else div:=divisors(n): for j from 1 by 1 while sum(div[i],i=1..j)<=n do sum(div[k],k=1..j) od: fi: end: seq(a(n),n=1..90); # _Emeric Deutsch_, Apr 01 2006
%t A117552 Table[Last@ TakeWhile[Accumulate@ Divisors@ n, # <= n &], {n, 80}] (* _Michael De Vlieger_, Oct 30 2017 *)
%o A117552 (PARI) A117552(n) = { my(divs=divisors(n), s=0); for(i=1,#divs,if((s+divs[i])>n,return(s),s+=divs[i])); s; }; \\ _Antti Karttunen_, Oct 30 2017
%Y A117552 Cf. A117553, A109883, A377247 (corresponding largest divisor index).
%K A117552 nonn
%O A117552 1,4
%A A117552 _Leroy Quet_, Mar 28 2006
%E A117552 More terms from _Emeric Deutsch_, Apr 01 2006