A117561 a(n) = floor(n*(n^3-n-3)/(2*(n-1))).
3, 15, 38, 73, 124, 194, 286, 403, 548, 724, 934, 1181, 1468, 1798, 2174, 2599, 3076, 3608, 4198, 4849, 5564, 6346, 7198, 8123, 9124, 10204, 11366, 12613, 13948, 15374, 16894, 18511, 20228, 22048, 23974, 26009, 28156, 30418, 32798, 35299, 37924
Offset: 2
Examples
a[3] = 38 because the antimagic constant of an antimagic square of order 4 cannot exceed 38 (see comments)
Links
- Eric Weisstein's World of Mathematics, Antimagic Square.
Programs
-
Mathematica
Table[Floor[n(n^3-n-3)/(2*(n-1))], {n, 2, 50}]
Formula
a(n) = floor(n*(n^3-n-3)/(2*(n-1))).
G.f.: x^2*(3+3*x-4*x^2-x^3+3*x^4-x^5)/(1-x)^4. - Colin Barker, Mar 29 2012
Comments