This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117567 #18 Jan 19 2025 14:16:27 %S A117567 1,0,1,1,0,1,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,0,1,1,0,1,1, %T A117567 0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,0, %U A117567 1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1 %N A117567 Riordan array ((1+x^2)/(1-x^3),x). %C A117567 Sequence array for the sequence F(L((n+2)/3)). %D A117567 Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31. %H A117567 Antti Karttunen, <a href="/A117567/b117567.txt">Table of n, a(n) for n = 0..101474; the first 450 rows of the triangle</a> %H A117567 D. Panario, M. Sahin, Q. Wang, <a href="http://www.emis.de/journals/INTEGERS/papers/n78/n78.Abstract.html">A family of Fibonacci-like conditional sequences</a>, INTEGERS, Vol. 13, 2013, #A78. %H A117567 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>. %F A117567 Number triangle T(n,k) = F(L((n-k+2)/3))[k<=n] where L(j/p) is the Legendre symbol of j and p. %F A117567 In the above, I assume that F stands for Fibonacci sequence (A000045), which in domain {-1, 0, 1} reduces to taking the absolute value of the argument. - _Antti Karttunen_, Jan 19 2025 %e A117567 Triangle begins: %e A117567 n\k| 0 1 2 3 4 5 6 7 8 9 %e A117567 ---+-------------------------------- %e A117567 0 | 1, %e A117567 1 | 0, 1, %e A117567 2 | 1, 0, 1, %e A117567 3 | 1, 1, 0, 1, %e A117567 4 | 0, 1, 1, 0, 1, %e A117567 5 | 1, 0, 1, 1, 0, 1, %e A117567 6 | 1, 1, 0, 1, 1, 0, 1, %e A117567 7 | 0, 1, 1, 0, 1, 1, 0, 1, %e A117567 8 | 1, 0, 1, 1, 0, 1, 1, 0, 1, %e A117567 9 | 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 %e A117567 etc. Row and column numbering added by _Antti Karttunen_, Jan 19 2025 %o A117567 (PARI) %o A117567 up_to = 119; %o A117567 A117567tr0(n,k) = abs(kronecker((n-k+2), 3)); \\ We could also use fibonacci instead of abs %o A117567 A117567list(up_to) = { my(v = vector(1+up_to), i=0); for(n=0,oo, for(k=0,n, i++; if(i > 1+up_to, return(v)); v[i] = A117567tr0(n,k))); (v); }; %o A117567 v117567 = A117567list(up_to); %o A117567 A117567(n) = v117567[1+n]; \\ _Antti Karttunen_, Jan 19 2025 %Y A117567 Row sums are A093878. Diagonal sums are A051275. Inverse is A117568. %K A117567 easy,nonn,tabl %O A117567 0,1 %A A117567 _Paul Barry_, Mar 29 2006 %E A117567 Data section extended up to a(119) [15 rows of triangle] by _Antti Karttunen_, Jan 19 2025