This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117584 #16 Feb 24 2025 16:32:21 %S A117584 1,1,2,1,3,5,1,4,7,12,1,5,9,17,29,1,6,11,22,41,70,1,7,13,27,53,99,169, %T A117584 1,8,15,32,65,128,239,408,1,9,17,37,77,157,309,577,985,1,10,19,42,89, %U A117584 186,379,746,1393,2378 %N A117584 Generalized Pellian triangle. %H A117584 G. C. Greubel, <a href="/A117584/b117584.txt">Rows n = 1..100, flattened</a> %F A117584 Antidiagonals of the generalized Pellian array. First row of the array = A000129: (1, 2, 5, 12, ...). n-th row of the array starts (1, n+1, ...); as a Pellian sequence. %F A117584 From _G. C. Greubel_, Jul 05 2021: (Start) %F A117584 T(n, k) = P(k) + (n-1)*P(k-1), where P(n) = A000129(n) (square array). %F A117584 Sum_{k=1..n} T(n-k+1, k) = A117185(n). (End) %e A117584 First few rows of the triangle are: %e A117584 1; %e A117584 1, 2; %e A117584 1, 3, 5; %e A117584 1, 4, 7, 12; %e A117584 1, 5, 9, 17, 29; %e A117584 1, 6, 11, 22, 41, 70; %e A117584 1, 7, 13, 27, 53, 99, 169; %e A117584 ... %e A117584 The triangle rows are antidiagonals of the generalized Pellian array: %e A117584 1, 2, 5, 12, 29, ... %e A117584 1, 3, 7, 17, 41, ... %e A117584 1, 4, 9, 22, 53, ... %e A117584 1, 5, 11, 27, 65, ... %e A117584 ... %e A117584 For example, in the row (1, 5, 11, 27, 65, ...), 65 = 2*27 + 11. %t A117584 T[n_, k_]:= Fibonacci[k, 2] + (n-1)*Fibonacci[k-1, 2]; %t A117584 Table[T[n-k+1, k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 05 2021 *) %o A117584 (Magma) %o A117584 P:= func< n | Round( ((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2)) ) >; %o A117584 T:= func< n,k | P(k) + (n-1)*P(k-1) >; %o A117584 [T(n-k+1, k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jul 05 2021 %o A117584 (Sage) %o A117584 def T(n,k): return lucas_number1(k,2,-1) + (n-1)*lucas_number1(k-1,2,-1) %o A117584 flatten([[T(n-k+1, k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Jul 05 2021 %Y A117584 Diagonals include A000129, A001333, A048654, A048655, A048693. %Y A117584 Cf. A117185. %K A117584 nonn,tabl %O A117584 1,3 %A A117584 _Gary W. Adamson_, Mar 29 2006