cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117602 Padovan numbers which can be divided by their digital root.

This page as a plain text file.
%I A117602 #16 Oct 13 2024 05:12:18
%S A117602 1,2,3,4,5,7,9,12,21,28,37,114,200,351,616,816,1081,1432,1897,4410,
%T A117602 5842,10252,13581,17991,23833,31572,41824,55405,73396,170625,396655,
%U A117602 525456,696081,1221537,1618192,2143648,3761840,11584946,20330163,26931732,62608681
%N A117602 Padovan numbers which can be divided by their digital root.
%H A117602 Nathaniel Johnston, <a href="/A117602/b117602.txt">Table of n, a(n) for n = 1..1000</a>
%H A117602 Kevin Ryde, <a href="/A117602/a117602.gp.txt">PARI/GP Code</a>, finding linear recurrence and g.f.
%H A117602 <a href="/index/Rec#order_8544">Index entries for linear recurrences with constant coefficients</a>, order 8544.
%F A117602 a(n) = X*a(n-s) + Y*a(n-2*s) + a(n-3*s) for n >= 8546, where s = 2848, X = Perrin(f) = A001608(f), Y = -Perrin(-f) = A078712(f), f = 4368. - _Kevin Ryde_, Oct 12 2024
%p A117602 A000931 := proc(n) option remember: if(n=0)then return 1: elif(n<=2)then return 0: else return procname(n-2)+procname(n-3): fi: end: A117602ind := proc(n) option remember: local k,p: if(n=1)then return 7: fi: for k from procname(n-1)+1 do p:=A000931(k): if(not p=A000931(A117602ind(n-1)) and p mod (((p-1) mod 9) + 1) = 0)then return k: fi: od: end: seq(A000931(A117602ind(n)),n=1..41); # _Nathaniel Johnston_, May 05 2011
%t A117602 p=LinearRecurrence[{0, 1, 1}, {1, 0, 0}, 71];Rest[Union[Select[p,Divisible[#,Mod[#-1,9]+1]&]]] (* _James C. McMahon_, Sep 25 2024 *)
%o A117602 (PARI) \\ See links.
%Y A117602 Cf. A000931, A117601, A117603, A117604.
%K A117602 nonn,easy,base
%O A117602 1,2
%A A117602 Luc Stevens (lms022(AT)yahoo.com), Apr 05 2006
%E A117602 Offset changed from 0 to 1 by _Nathaniel Johnston_, May 05 2011