cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117619 a(n) = n^2 + 7.

This page as a plain text file.
%I A117619 #46 Nov 29 2024 18:29:59
%S A117619 7,8,11,16,23,32,43,56,71,88,107,128,151,176,203,232,263,296,331,368,
%T A117619 407,448,491,536,583,632,683,736,791,848,907,968,1031,1096,1163,1232,
%U A117619 1303,1376,1451,1528,1607,1688,1771,1856,1943,2032,2123,2216,2311,2408,2507
%N A117619 a(n) = n^2 + 7.
%H A117619 Ivan Panchenko, <a href="/A117619/b117619.txt">Table of n, a(n) for n = 0..1000</a>
%H A117619 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A117619 G.f.: (-8*x^2 + 13*x - 7)/(x - 1)^3. - _Indranil Ghosh_, Apr 05 2017
%F A117619 From _Amiram Eldar_, Nov 02 2020: (Start)
%F A117619 Sum_{n>=0} 1/a(n) = (1 + sqrt(7)*Pi*coth(sqrt(7)*Pi))/14.
%F A117619 Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(7)*Pi*cosech(sqrt(7)*Pi))/14. (End)
%F A117619 From _Amiram Eldar_, Feb 05 2024: (Start)
%F A117619 Product_{n>=0} (1 - 1/a(n)) = sqrt(6/7)*sinh(sqrt(6)*Pi)/sinh(sqrt(7)*Pi).
%F A117619 Product_{n>=0} (1 + 1/a(n)) = 2*sqrt(2/7)*sinh(2*sqrt(2)*Pi)/sinh(sqrt(7)*Pi). (End)
%F A117619 From _Elmo R. Oliveira_, Nov 29 2024: (Start)
%F A117619 E.g.f.: exp(x)*(7 + x + x^2).
%F A117619 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
%t A117619 Table[n^2 + 7, {n, 0, 60}] (* _Stefan Steinerberger_, Apr 08 2006 *)
%o A117619 (PARI) a(n) = n^2 + 7 \\ _Indranil Ghosh_, Apr 05 2017
%o A117619 (Python) def a(n): return n**2 + 7 # _Indranil Ghosh_, Apr 05 2017
%Y A117619 Cf. A117950, A117951.
%K A117619 nonn,less,easy
%O A117619 0,1
%A A117619 _Parthasarathy Nambi_, Apr 07 2006
%E A117619 More terms from _Stefan Steinerberger_, Apr 08 2006