cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117678 Squares for which the multiplicative digital root is also a square.

Original entry on oeis.org

0, 1, 4, 9, 25, 100, 169, 196, 225, 256, 400, 529, 576, 625, 676, 900, 961, 1024, 1089, 1156, 1225, 1296, 1521, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3481, 3600, 3844, 3969, 4096, 4225, 4356, 4489, 4900, 5041, 5184, 5329
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 12 2006

Keywords

Comments

From Robert Israel, Oct 22 2015: (Start)
1, 9, and squares in A034048 and A034051.
Are there infinitely many squares in A034051? (End)

Crossrefs

Programs

  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A117678 := proc(n) option remember: local k, m: if(n=1)then return 0:fi: for k from procname(n-1)+1 do m:=k^2: while(length(m)>1)do m:=A007954(m): od: if(m in {0,1,4,9})then return k: fi: od: end: seq(A117678(n)^2, n=1..47); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Select[Range[0, 73]^2, IntegerQ@ Sqrt[FixedPoint[Times @@ IntegerDigits@ # &, #] &@ #] &] (* Michael De Vlieger, Oct 22 2015 *)
  • PARI
    t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}
    for(n=0, 100, if(issquare(t(n^2)), print1(n^2, ", "))); \\ Altug Alkan, Oct 22 2015

Extensions

Offset and some terms corrected by Nathaniel Johnston, May 05 2011