This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117683 #14 Jul 22 2023 12:12:07 %S A117683 1,1,1,1,1,1,4,4,4,1,1,4,4,1,1,6,6,24,6,6,1,1,6,6,6,6,1,1,8,8,48,12, %T A117683 48,8,8,1,9,72,72,108,108,72,72,9,1,10,90,720,180,1080,180,720,90,10, %U A117683 1,1,10,90,180,180,180,180,90,10,1,1,12,12,120,270,2160,360,2160,270,120,12,12,1 %N A117683 Triangle T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), read by rows. %H A117683 G. C. Greubel, <a href="/A117683/b117683.txt">Rows n = 1..50 of the triangle, flattened</a> %F A117683 T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), for 1 <= k <= n, n >= 1. %F A117683 Sum_{k=1..n} T(n, k) = A117684(n). %e A117683 Triangle begins as: %e A117683 1; %e A117683 1, 1; %e A117683 1, 1, 1; %e A117683 4, 4, 4, 1; %e A117683 1, 4, 4, 1, 1; %e A117683 6, 6, 24, 6, 6, 1; %e A117683 1, 6, 6, 6, 6, 1, 1; %e A117683 8, 8, 48, 12, 48, 8, 8, 1; %e A117683 9, 72, 72, 108, 108, 72, 72, 9, 1; %t A117683 f[n_]:= If[PrimeQ[n], 1, n]; %t A117683 cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *) %t A117683 T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]); %t A117683 Table[T[n, k], {n,12}, {k,n}]//Flatten %o A117683 (PARI) primorial(n)=prod(i=1,primepi(n),prime(i)) %o A117683 T(n,m)=binomial(n,m)*primorial(m)*primorial(n-m)/primorial(n) \\ _Charles R Greathouse IV_, Jan 16 2012 %o A117683 (Magma) %o A117683 A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >; %o A117683 A117683:= func< n,k | A049614(n)/(A049614(k)*A049614(n-k)) >; %o A117683 [A117683(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jul 21 2023 %o A117683 (SageMath) %o A117683 def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1, 1+prime_pi(n))) %o A117683 def A117683(n,k): return A049614(n)/(A049614(k)*A049614(n-k)) %o A117683 flatten([[A117683(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Jul 21 2023 %Y A117683 Cf. A049614, A117684. %K A117683 nonn,tabl %O A117683 1,7 %A A117683 _Roger L. Bagula_, Apr 12 2006 %E A117683 Edited by the Associate Editors of the OEIS, Aug 18 2009 %E A117683 Edited by _G. C. Greubel_, Jul 21 2023