This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117692 #10 Jul 22 2023 21:12:48 %S A117692 1,4,2,18,18,6,6,9,6,6,150,75,75,150,30,30,75,25,75,30,30,1470,735, %T A117692 1225,1225,735,1470,210,210,735,245,1225,245,735,210,210,210,105,245, %U A117692 245,245,245,105,210,210,210,105,35,245,49,245,35,105,210,210 %N A117692 Triangle T(n,k) = A034386(n)^2/(A034386(k)*A034386(n-k)), 1 <= k <= n, read by rows. %H A117692 G. C. Greubel, <a href="/A117692/b117692.txt">Rows n = 1..50 of the triangle, flattened</a> %e A117692 The triangle starts in row n=1 as: %e A117692 1; %e A117692 4, 2; %e A117692 18, 18, 6; %e A117692 6, 9, 6, 6; %e A117692 150, 75, 75, 150, 30; %e A117692 30, 75, 25, 75, 30, 30; %e A117692 1470, 735, 1225, 1225, 735, 1470, 210; %t A117692 f[n_]:= If[PrimeQ[n], n, 1]; %t A117692 cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A034386 *) %t A117692 T[n_, k_]:= T[n, k]= cf[n]^2/(cf[k]*cf[n-k]); %t A117692 Table[T[n,k], {n, 12}, {k,n}]//Flatten %o A117692 (Magma) %o A117692 A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >; %o A117692 [A034386(n)^2/(A034386(k)*A034386(n-k)): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jul 22 2023 %o A117692 (SageMath) %o A117692 def A034386(n): return sloane.A002110(prime_pi(n)) %o A117692 def T(n,k): return A034386(n)^2/(A034386(k)*A034386(n-k)) %o A117692 flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Jul 22 2023 %Y A117692 Cf. A034386. %K A117692 nonn,look,tabl %O A117692 1,2 %A A117692 _Roger L. Bagula_, Apr 12 2006 %E A117692 Offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010