This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117716 #14 Jul 23 2023 20:14:15 %S A117716 0,0,0,1,1,1,1,2,3,4,1,4,9,16,25,2,9,28,65,126,217,3,20,87,264,635, %T A117716 1308,2415,4,44,270,1072,3200,7884,16954,32960,6,97,838,4353,16126, %U A117716 47521,119022,264193,534358,9,214,2601,17676,81265,286434,835569,2117656,4815801,10050030 %N A117716 Triangle T(n,k) read by rows: the coefficient [x^n] of x^2/(1-(k+1)*x-x^3) in row n, columns 0 <= k <= n. %H A117716 G. C. Greubel, <a href="/A117716/b117716.txt">Rows n = 0..50 of the triangle, flattened</a> %e A117716 Triangle begins as: %e A117716 0; %e A117716 0, 0; %e A117716 1, 1, 1; %e A117716 1, 2, 3, 4; %e A117716 1, 4, 9, 16, 25; %e A117716 2, 9, 28, 65, 126, 217; %e A117716 3, 20, 87, 264, 635, 1308, 2415; %e A117716 4, 44, 270, 1072, 3200, 7884, 16954, 32960; %p A117716 A117716 := proc(n,m) %p A117716 x^2/(1-(m+1)*x-x^3) ; %p A117716 if n < 0 then %p A117716 0; %p A117716 else %p A117716 coeftayl(%,x=0,n) ; %p A117716 end if; %p A117716 end proc: # _R. J. Mathar_, May 14 2013 %t A117716 T[n_, k_]:= T[n, k]= Coefficient[Series[x^2/(1-(k+1)*x-x^3), {x,0,n+ 2}], x, n]; %t A117716 Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten %o A117716 (Magma) %o A117716 m:=12; %o A117716 R<x>:=PowerSeriesRing(Integers(), m+2); %o A117716 A117716:= func< n,k | Coefficient(R!( x^2/(1-(k+1)*x-x^3) ), n) >; %o A117716 [[A117716(n,k): k in [0..n]]: n in [0..m]]; // _G. C. Greubel_, Jul 23 2023 %o A117716 (SageMath) %o A117716 def A117716(n,k): %o A117716 P.<x> = PowerSeriesRing(QQ) %o A117716 return P( x^2/(1-(k+1)*x-x^3) ).list()[n] %o A117716 flatten([[A117716(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 23 2023 %Y A117716 Cf. A000930 (column 0), A008998 (column 1), A052541 (column 2), A052927 (column 3), A001093 (row 5), A185065 (row 6), A117715, A117724. %K A117716 nonn,tabl %O A117716 0,8 %A A117716 _Roger L. Bagula_, Apr 13 2006, corrected Apr 15 2006 %E A117716 Edited by _G. C. Greubel_, Jul 23 2023