This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117733 #4 Mar 30 2012 17:34:20 %S A117733 2,3,7,10,34,54,234,402,1938,17490,19590,209670,237390,2933070, %T A117733 43575630,696759630,697240110,12541643310,12550832490,250832355690 %N A117733 Sum of the n-th primorial and the n-th compositorial number. %C A117733 The primorial numbers A034386 define their exponential generating function %C A117733 A034386(x) = sum_{n>=0} A034386(n)*x^n/n! = sum_{n>=0} x^n/A049614(n). %C A117733 The compositorial numbers A049614 define their exponential generating function %C A117733 A049614(x) = sum_{n>=0} A049614(n)*x^n/n! = sum_{n>=0} x^n/A034386(n). %C A117733 Padding the values with A034386(n=0)=A049614(n=0)=1 at the beginning, %C A117733 two special values of these are %C A117733 A049614(x=1) = 4.5892461266379861713581024207350707369274... and %C A117733 A034386(x=1) = 2.9200509773161347120925629171120194680027... %F A117733 a(n) = A034386(n)+A049614(n). %t A117733 f[n_] := If[PrimeQ[n] == True, 1, n] cf[0] = 1; cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] a=Table[cf[n] + p[n], {n, 1, 20}] %Y A117733 Cf. A034386, A117683. %K A117733 nonn %O A117733 1,1 %A A117733 _Roger L. Bagula_, Apr 14 2006 %E A117733 Offset and A-number corrected; comment rewritten - The Assoc Eds of the OEIS, Oct 20 2010