A117739 Decimal expansion of the largest C_0 = 1.2209864... such that for C < C_0 and A < 2 the sequence a(n) = floor[A^(C^n)] can't contain only prime terms.
1, 2, 2, 0, 9, 8, 6, 4, 0, 7, 1, 3, 9, 5, 5, 0, 2, 4, 4, 2, 7, 3, 7, 0, 1, 4, 5, 1, 8, 8, 3, 5, 5, 8, 1, 4, 1, 6, 4, 6, 2, 4, 7, 5, 4, 0, 6, 0, 2, 9, 3, 8, 4, 4, 4, 7, 9, 1, 9, 7, 2, 9, 2, 5, 3, 7, 5, 1, 0, 3, 8, 7, 9, 7, 4, 6, 0, 0, 9, 1, 9, 1, 0, 3, 4, 2
Offset: 1
Links
- Andrey V. Kulsha, Table of n, a(n) for n = 1..50000
- Chris K. Caldwell, A proof of a generalization of Mills' Theorem
Formula
C_0 can be estimated as (logP/log84)^(1/k), where P is k+10th term of A243358.
Extensions
Terms after a(18) from Andrey V. Kulsha, Jun 03 2014
Comments