This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117753 #15 Jul 21 2023 17:29:04 %S A117753 0,0,0,0,0,0,1,1,2,1,6,6,12,6,12,0,0,0,0,0,0,24,24,48,24,144,0,576, %T A117753 210,210,420,210,1260,0,0,3780,0,0,0,0,0,0,0,0,0,1728,1728,3456,1728, %U A117753 10368,207360,41472,0,0,82944,210,210,420,210,1260,25200,5040,44100,1209600,362880,44100 %N A117753 Triangle T(n, k) = f(n, 1 + (n mod 3))*f(k, 1 + (k mod 3)) mod n!, read by rows (see formula for f(n, k)). %H A117753 G. C. Greubel, <a href="/A117753/b117753.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117753 T(n, k) = f(n, 1 + (n mod 3))*f(k, 1 + (k mod 3)) mod n!, where f(n, 1) = A049614(n), f(n, 2) = A034386(n), and f(n, 3) = n!. %e A117753 Triangle begins as: %e A117753 0; %e A117753 0, 0; %e A117753 0, 0, 0; %e A117753 1, 1, 2, 1; %e A117753 6, 6, 12, 6, 12; %e A117753 0, 0, 0, 0, 0, 0; %e A117753 24, 24, 48, 24, 144, 0, 576; %e A117753 210, 210, 420, 210, 1260, 0, 0, 3780; %e A117753 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A117753 1728, 1728, 3456, 1728, 10368, 207360, 41472, 0, 0, 82944; %t A117753 f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *) %t A117753 g[n_]:= If[PrimeQ[n], n, 1]; p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]]; (* A034386 *) %t A117753 f[n_, 1]= cf[n]; f[n_, 2]= p[n]; f[n_, 3]= n!; %t A117753 Table[Mod[f[n, 1 + Mod[n, 3]]*f[m, 1 + Mod[m, 3]], n!], {n, 0, 10}, {m, 0, n}]//Flatten %o A117753 (Magma) %o A117753 A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >; %o A117753 A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >; %o A117753 function f(n,k) %o A117753 if k eq 1 then return A049614(n); %o A117753 elif k eq 2 then return A034386(n); %o A117753 else return Factorial(n); %o A117753 end if; %o A117753 end function; %o A117753 A117753:= func< n,k | Floor( f( n, 1 + (n mod 3) )*f( k, 1 + (k mod 3)) ) mod Factorial(n) >; %o A117753 [A117753(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 21 2023 %o A117753 (SageMath) %o A117753 from sympy import primorial %o A117753 def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n))) %o A117753 def A034386(n): return 1 if n == 0 else primorial(n, nth=False) %o A117753 def f(n,m): %o A117753 if m==1: return A049614(n) %o A117753 elif m==2: return A034386(n) %o A117753 else: return factorial(n) %o A117753 def A117753(n, k): return (f(n, 1+(n%3))*f(k, 1+(k%3)))%factorial(n) %o A117753 flatten([[A117753(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 21 2023 %Y A117753 Cf. A034386, A049614, A117682. %K A117753 nonn,tabl %O A117753 0,9 %A A117753 _Roger L. Bagula_, Apr 14 2006 %E A117753 Edited by _G. C. Greubel_, Jul 21 2023