cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117767 a(n) is the difference between the smallest square greater than prime(n) and the largest square less than prime(n), where prime(n) = A000040(n) is the n-th prime number.

This page as a plain text file.
%I A117767 #21 Feb 16 2025 08:33:00
%S A117767 3,3,5,5,7,7,9,9,9,11,11,13,13,13,13,15,15,15,17,17,17,17,19,19,19,21,
%T A117767 21,21,21,21,23,23,23,23,25,25,25,25,25,27,27,27,27,27,29,29,29,29,31,
%U A117767 31,31,31,31,31,33,33,33,33,33,33,33,35,35,35,35,35,37,37,37,37,37,37
%N A117767 a(n) is the difference between the smallest square greater than prime(n) and the largest square less than prime(n), where prime(n) = A000040(n) is the n-th prime number.
%C A117767 From _Reinhard Zumkeller_, Sep 20 2014: (Start)
%C A117767 a(n) <= floor(2*sqrt(prime(n))) + 1 = A247485(n).
%C A117767 a(A247514(n)) = A247485(A247514(n)).
%C A117767 a(A247515(n)) < A247485(A247515(n)). (End)
%H A117767 Reinhard Zumkeller, <a href="/A117767/b117767.txt">Table of n, a(n) for n = 1..10000</a>
%H A117767 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LegendresConjecture.html">Legendre's Conjecture</a>.
%F A117767 a(n) = 2*A000006(n) + 1.
%F A117767 a(n) = 2*floor(sqrt(prime(n))) + 1. - _R. J. Mathar_, Apr 21 2006
%e A117767 The 7th prime number is 17, which is between the consecutive squares 16 and 25, so a(7) = 25 - 16 = 9.
%t A117767 a[n_]:=2Floor[Sqrt[Prime[n]]]+1
%o A117767 (PARI) { forprime(p=2,200, f = floor(sqrt(p)) ; print1(2*f+1,",") ; ) ; } \\ _R. J. Mathar_, Apr 21 2006
%o A117767 (Haskell)
%o A117767 a117767 = (+ 1) . (* 2) . a000006  -- _Reinhard Zumkeller_, Sep 20 2014
%Y A117767 Cf. A000040, A000006.
%Y A117767 Cf. A096494, A247485, A247514, A247515.
%K A117767 easy,nonn
%O A117767 1,1
%A A117767 _Odimar Fabeny_, Apr 15 2006
%E A117767 More terms from _R. J. Mathar_, Apr 21 2006
%E A117767 Edited by _Dean Hickerson_, Jun 03 2006