cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117805 Start with 3. Square the previous term and subtract it.

This page as a plain text file.
%I A117805 #26 Oct 11 2023 15:17:03
%S A117805 3,6,30,870,756030,571580604870,326704387862983487112030,
%T A117805 106735757048926752040856495274871386126283608870,
%U A117805 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068030
%N A117805 Start with 3. Square the previous term and subtract it.
%C A117805 The next term is too large to include.
%C A117805 a(n) = A005267(n+1)+1. - _R. J. Mathar_, Apr 22 2007. This is true by induction. - _M. F. Hasler_, May 04 2007<
%C A117805 For any a(0) > 2, the sequence a(n) = a(n-1) * (a(n-1) - 1) gives a constructive proof that there exists integers with at least n + 1 distinct prime factors, e.g., a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - _Daniel Forgues_, Mar 03 2017
%F A117805 a(0) = 3, a(n) = (a(n-1))^2 - a(n-1).
%F A117805 a(n) ~ c^(2^n), where c = 2.330283023986140936420341573975137247354077600883596774023675490739568138... . - _Vaclav Kotesovec_, Dec 17 2014
%e A117805 Start with 3; 3^2 - 3 = 6; 6^2 - 6 = 30; etc.
%p A117805 f:=proc(n) option remember; if n=0 then RETURN(3); else RETURN(f(n-1)^2-f(n-1)); fi; end;
%t A117805 k=3;lst={k};Do[k=k^2-k;AppendTo[lst,k],{n,9}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 19 2010 *)
%t A117805 RecurrenceTable[{a[0]==3, a[n]==a[n-1]*(a[n-1] - 1)}, a, {n, 0, 10}] (* _Vaclav Kotesovec_, Dec 17 2014 *)
%t A117805 NestList[#^2-#&,3,10] (* _Harvey P. Dale_, Oct 11 2023 *)
%Y A117805 Cf. A007018.
%K A117805 easy,nonn
%O A117805 0,1
%A A117805 _Jacob Vecht_, Apr 29 2006