cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117846 Given n, define a(n) as follows: let a sequence b(k) be defined by b(k+1)=b(k)+b(k)mod k; b(1)=2n-1. (Here b(k)mod k denotes the least nonnegative residue of b(k) modulo k). Let a(n) be the common value of b(k+1)-b(k) for all large k if such exists; otherwise let a(n) be 0.

Original entry on oeis.org

97, 1, 2, 2, 316, 2, 3, 3, 3, 4, 12, 4, 4, 12, 11, 11, 316, 11, 316, 316, 6, 316, 316, 316, 316, 97, 316, 316, 13, 316, 13, 13, 13, 13, 8, 13, 13, 12, 13, 13, 13, 13, 13, 13, 14, 14, 316, 14, 316, 316, 316, 97, 9, 97, 97, 13, 10, 10, 11, 10, 14, 11, 12, 12, 97, 12, 97, 132
Offset: 1

Views

Author

Alex Abercrombie, Mar 22 2007

Keywords

Comments

Putting b(1)=2n gives essentially the same sequence as putting b(1)=2n-1. It is a plausible conjecture or at least an interesting open problem that a(n) is never zero; that is all the sequences b(k) are arithmetic progressions from some point on. Sequence A073117 is the sequence b(k) with b(1)=1. Do the values a(n) include all positive numbers?

Examples

			n=4: b(1)=7 and the sequence b(k) continues 7,8,10,12,14...with b(k+1)-b(k)=2 for all k>3, so a(4)=2.
		

Crossrefs

Cf. A073117.