A117846 Given n, define a(n) as follows: let a sequence b(k) be defined by b(k+1)=b(k)+b(k)mod k; b(1)=2n-1. (Here b(k)mod k denotes the least nonnegative residue of b(k) modulo k). Let a(n) be the common value of b(k+1)-b(k) for all large k if such exists; otherwise let a(n) be 0.
97, 1, 2, 2, 316, 2, 3, 3, 3, 4, 12, 4, 4, 12, 11, 11, 316, 11, 316, 316, 6, 316, 316, 316, 316, 97, 316, 316, 13, 316, 13, 13, 13, 13, 8, 13, 13, 12, 13, 13, 13, 13, 13, 13, 14, 14, 316, 14, 316, 316, 316, 97, 9, 97, 97, 13, 10, 10, 11, 10, 14, 11, 12, 12, 97, 12, 97, 132
Offset: 1
Keywords
Examples
n=4: b(1)=7 and the sequence b(k) continues 7,8,10,12,14...with b(k+1)-b(k)=2 for all k>3, so a(4)=2.
Crossrefs
Cf. A073117.
Comments