This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117895 #12 Sep 30 2021 18:15:40 %S A117895 1,1,2,1,3,3,1,4,4,8,1,5,5,11,19,1,6,6,14,26,46,1,7,7,17,33,63,111,1, %T A117895 8,8,20,40,80,152,268,1,9,9,23,47,97,193,367,647,1,10,10,26,54,114, %U A117895 234,466,886,1562,1,11,11,29,61,131,275,565,1125,2139,3771,1,12,12,32,68,148,316,664,1364,2716,5164,9104 %N A117895 Triangle T(n, k) = (k-n)*A000129(k+1) + (3*n-3*k+1)*A000129(k) with T(n,0) = 1, for 0 <= k <= n-1, read by rows. %C A117895 Successive deletions of the right borders of triangle A117894 produces triangles whose row sums = generalized Pell sequences starting (1, 2...), (1, 3...), (1, 4...); etc. Row sums of A117894 = A000129: (1, 2, 5...). Row sums of A117895 = A001333: (1, 3, 7...). Deletion of the border of A117895 would produce a triangle with row sums of the Pell sequence A048654 (1, 4, 9...); and so on. %H A117895 G. C. Greubel, <a href="/A117895/b117895.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117895 Delete right border of triangle A117894. Alternatively, let row 1 = 1 and using the heading 0, 1, 1, 3, 7, 17, 41, 99, 239...(i.e. A001333 starting with 0, 1, 1, 3...); add the first n terms of the heading to n-th row of triangle A117894. %F A117895 From _G. C. Greubel_, Sep 27 2021: (Start) %F A117895 T(n, k) = (k-n)*A000129(k+1) + (3*n-3*k+1)*A000129(k) with T(n,0) = 1. %F A117895 T(n, 1) = n+1 for n >= 1. %F A117895 T(n, 2) = n+1 for n >= 2. %F A117895 T(n, n) = 2*[n=0] + A078343(n). (End) %e A117895 First few rows of the triangle are: %e A117895 1; %e A117895 1, 2; %e A117895 1, 3, 3; %e A117895 1, 4, 4, 8; %e A117895 1, 5, 5, 11, 19; %e A117895 1, 6, 6, 14, 26, 46; %e A117895 1, 7, 7, 17, 33, 63, 111; %e A117895 1, 8, 8, 20, 40, 80, 152, 268; %e A117895 ... %e A117895 Row 4, (1, 4, 4, 8) is produced by adding (0, 1, 1, 3) to row 4 of A117894: (1, 3, 3, 5). %t A117895 T[n_, k_]:= T[n, k]= If[k==0, 1, (k-n)*Fibonacci[k+1, 2] + (3*n-3*k +1)*Fibonacci[k, 2]]; Table[T[n, k], {n,0,12}, {k,0,n-1}]//Flatten (* _G. C. Greubel_, Sep 27 2021 *) %o A117895 (Magma) Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >; %o A117895 [k eq 0 select 1 else (k-n)*Pell(k+1) + (3*n-3*k+1)*Pell(k): k in [0..n-1], n in [0..12]]; // _G. C. Greubel_, Sep 27 2021 %o A117895 (Sage) %o A117895 def P(n): return lucas_number1(n, 2, -1) %o A117895 def A117895(n,k): return 1 if (k==0) else (k-n)*P(k+1) + (3*n-3*k+1)*P(k) %o A117895 flatten([[A117895(n,k) for k in (0..n-1)] for n in (0..12)]) # _G. C. Greubel_, Sep 27 2021 %Y A117895 Cf. A000129, A001333, A048654, A048655, A048693, A117894. %K A117895 nonn,tabl %O A117895 0,3 %A A117895 _Gary W. Adamson_, Mar 30 2006 %E A117895 New name and more terms added by _G. C. Greubel_, Sep 27 2021