This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117904 #8 Oct 21 2021 01:30:14 %S A117904 1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0, %T A117904 1,1,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,0, %U A117904 1,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,0,1,1 %N A117904 Number triangle [k<=n]*0^abs(L(C(n,2)/3) - L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p. %C A117904 Row sums are A009947(n+2). %C A117904 Diagonal sums are A117905. %C A117904 Inverse is A117906. %C A117904 Equals A117898 mod 2. %H A117904 G. C. Greubel, <a href="/A117904/b117904.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117904 G.f.: (1 +x*(1+y) +x^2*y^2 +x^3*y)/((1-x^3)*(1-x^3*y^3)). %F A117904 T(n, k) = [k<=n] * 2^abs(L(C(n,2)/3) - L(C(k,2)/3)) mod 2. %e A117904 Triangle begins %e A117904 1; %e A117904 1, 1; %e A117904 0, 0, 1; %e A117904 1, 1, 0, 1; %e A117904 1, 1, 0, 1, 1; %e A117904 0, 0, 1, 0, 0, 1; %e A117904 1, 1, 0, 1, 1, 0, 1; %e A117904 1, 1, 0, 1, 1, 0, 1, 1; %e A117904 0, 0, 1, 0, 0, 1, 0, 0, 1; %e A117904 1, 1, 0, 1, 1, 0, 1, 1, 0, 1; %e A117904 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1; %t A117904 T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]; %t A117904 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 20 2021 *) %o A117904 (Sage) %o A117904 def A117904(n,k): return 1 if abs(jacobi_symbol(binomial(n,2), 3) - jacobi_symbol(binomial(k,2), 3))==0 else 0 %o A117904 flatten([[A117904(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Oct 20 2021 %Y A117904 Cf. A009947, A117898, A117905, A117906. %K A117904 easy,nonn,tabl %O A117904 0,1 %A A117904 _Paul Barry_, Apr 01 2006