This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117906 #6 Oct 21 2021 01:30:42 %S A117906 1,-1,1,0,0,1,0,-1,0,1,0,0,0,-1,1,0,0,-1,0,0,1,0,0,0,0,-1,0,1,0,0,0,0, %T A117906 0,0,-1,1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0, %U A117906 -1,1,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,1 %N A117906 Inverse of number triangle A117904. %C A117906 Row sums are (1, 0, 1, 0, 0, 0, ...) with g.f. 1 + x^2. %C A117906 Diagonal sums are A117907. %H A117906 G. C. Greubel, <a href="/A117906/b117906.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117906 G.f.: (1 -x*(1-y) +x^2*y^2 -x^3*y -x^5*y^2)/(1-x^3*y^3). %e A117906 Triangle begins %e A117906 1; %e A117906 -1, 1; %e A117906 0, 0, 1; %e A117906 0, -1, 0, 1; %e A117906 0, 0, 0, -1, 1; %e A117906 0, 0, -1, 0, 0, 1; %e A117906 0, 0, 0, 0, -1, 0, 1; %e A117906 0, 0, 0, 0, 0, 0, -1, 1; %e A117906 0, 0, 0, 0, 0, -1, 0, 0, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, -1, 0, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; %e A117906 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1; %t A117906 M[n_, k_]:= M[n, k]= If[k>n, 0, If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]]; %t A117906 m:= m= With[{q=20}, Table[M[n, k], {n,0,q}, {k,0,q}]]; %t A117906 T[n_, k_]:= Inverse[m][[n+1, k+1]]; %t A117906 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 20 2021 *) %Y A117906 Cf. A117904, A117907. %K A117906 easy,sign,tabl %O A117906 0,1 %A A117906 _Paul Barry_, Apr 01 2006