cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117930 Number of partitions of 2n into factorial parts (0! not allowed, i.e., only one kind of 1 can be a part). Also number of partitions of 2n+1 into factorial parts.

This page as a plain text file.
%I A117930 #29 Nov 03 2023 16:05:08
%S A117930 1,2,3,5,7,9,12,15,18,22,26,30,36,42,48,56,64,72,82,92,102,114,126,
%T A117930 138,153,168,183,201,219,237,258,279,300,324,348,372,400,428,456,488,
%U A117930 520,552,588,624,660,700,740,780,825,870,915,965,1015,1065,1120,1175,1230
%N A117930 Number of partitions of 2n into factorial parts (0! not allowed, i.e., only one kind of 1 can be a part). Also number of partitions of 2n+1 into factorial parts.
%C A117930 a(n) = A064986(2n) = A064986(2n+1). The first 48 terms of this sequence agree with those of A090632.
%C A117930 a(n) = A064986(2*n) = A064986(2*n+1). - _Reinhard Zumkeller_, Dec 04 2011
%H A117930 Alois P. Heinz, <a href="/A117930/b117930.txt">Table of n, a(n) for n = 0..1000</a> (first 250 terms from Reinhard Zumkeller)
%H A117930 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F A117930 G.f.: 1/((1-x)*Product_{j>=2} (1 - x^(j!/2))).
%e A117930 a(3) = 5 because the partitions of 6 into factorials are [6], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1].
%p A117930 g:=1/(1-x)/product(1-x^(j!/2),j=2..7): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65);
%p A117930 # second Maple program
%p A117930 b:= proc(n, i) option remember;
%p A117930       `if`(n=0 or i=1, 1, b(n, i-1)+
%p A117930       `if`(i!>n, 0, b(n-i!, i)))
%p A117930     end:
%p A117930 a:= proc(n) local i;
%p A117930       for i while(i!<2*n) do od;
%p A117930       b(2*n, i)
%p A117930     end:
%p A117930 seq(a(n), n=0..100);  # _Alois P. Heinz_, Jun 13 2012
%t A117930 f[n_] := Length@ IntegerPartitions[2 n, All, {1, 2, 6, 24, 120}]; Array[f, 57, 0] (* _Robert G. Wilson v_, Oct 02 2014 *)
%t A117930 b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i] ] ]; a[n_] := Module[{i}, For[i=1, i!<2*n, i++]; b[2*n, i]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jun 29 2015, after _Alois P. Heinz_ *)
%o A117930 (Haskell)
%o A117930 a117930 n = p (tail a000142_list) $ 2*n where
%o A117930    p _          0             = 1
%o A117930    p ks'@(k:ks) m | m < k     = 0
%o A117930                   | otherwise = p ks' (m - k) + p ks m
%o A117930 -- _Reinhard Zumkeller_, Dec 04 2011
%Y A117930 Cf. A064986, A090632.
%K A117930 nonn
%O A117930 0,2
%A A117930 _Emeric Deutsch_, Apr 04 2006
%E A117930 An incorrect g.f. was deleted by _N. J. A. Sloane_, Sep 16 2009