A117937 Triangle, rows = inverse binomial transforms of A117938 columns.
1, 1, 1, 3, 3, 2, 4, 10, 12, 6, 7, 27, 58, 60, 24, 11, 71, 240, 420, 360, 120, 18, 180, 920, 2460, 3504, 2520, 720, 29, 449, 3360, 13020, 27720, 32760, 20160, 5040, 47, 1107, 11898, 64620, 194184, 337680, 338400, 181440, 40320, 76, 2710, 41268, 307194, 1257120, 3029760, 4415040
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 3, 3, 2; 4, 10, 12, 6; 7, 27, 58, 60, 24; 11, 71, 240, 420, 360, 120; ... For example, row 4: (4, 10, 12, 6) = the inverse binomial transform of column 4 of A117938: (4, 14, 36, 76, 140...), being f(x), x =1,2,3...using the Lucas polynomial x^3 + 3x.
Programs
-
Maple
A117937 := proc(n,k) add( A117938(n+i,n)*binomial(k-1,i)*(-1)^(1+i-k),i=0..k-1) ; end proc: seq(seq(A117937(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
Comments