This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117941 #15 Nov 12 2021 12:24:05 %S A117941 1,-2,1,-5,2,1,-2,0,0,1,4,-2,0,-2,1,10,-4,-2,-5,2,1,-5,0,0,2,0,0,1,10, %T A117941 -5,0,-4,2,0,-2,1,25,-10,-5,-10,4,2,-5,2,1,-2,0,0,0,0,0,0,0,0,1,4,-2, %U A117941 0,0,0,0,0,0,0,-2,1,10,-4,-2,0,0,0,0,0,0,-5,2,1,4,0,0,-2,0,0,0,0,0,-2,0,0,1,-8,4,0,4,-2,0,0,0,0,4,-2,0,-2,1 %N A117941 Inverse of number triangle A117939. %C A117941 Row sums are A117942. %C A117941 T(n, k) mod 2 = A117944(n,k). %H A117941 G. C. Greubel, <a href="/A117941/b117941.txt">Rows n = 0..50 of the triangle, flattened</a> %e A117941 Triangle begins %e A117941 1; %e A117941 -2, 1; %e A117941 -5, 2, 1; %e A117941 -2, 0, 0, 1; %e A117941 4, -2, 0, -2, 1; %e A117941 10, -4, -2, -5, 2, 1; %e A117941 -5, 0, 0, 2, 0, 0, 1; %e A117941 10, -5, 0, -4, 2, 0, -2, 1; %e A117941 25, -10, -5, -10, 4, 2, -5, 2, 1; %t A117941 M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 0]; %t A117941 m:= m= With[{q = 60}, Table[M[n, k], {n,0,q}, {k,0,q}]]; %t A117941 T[n_, k_]:= Inverse[m][[n+1, k+1]]; %t A117941 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 29 2021 *) %Y A117941 Cf. A117939, A117942, A117944. %K A117941 sign,tabl %O A117941 0,2 %A A117941 _Paul Barry_, Apr 05 2006