This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117944 #10 Nov 12 2021 00:53:01 %S A117944 1,0,1,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, %T A117944 0,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0, %U A117944 0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A117944 Triangle related to powers of 3 partitions of n. %C A117944 Inverse is A117945. %C A117944 Row sums of inverse are A039966. %H A117944 G. C. Greubel, <a href="/A117944/b117944.txt">Rows n = 0..50 of the triangle, flattened</a> %F A117944 Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) mod 2, where L(j/p) is the Legendre symbol of j and p. %F A117944 T(n, k) = A117939(n,k) mod 2. %F A117944 T(n, k) = A117939^(-1)(n,k) mod 2. %F A117944 Sum_{k=0..n} T(n, k) = A117943(n). %e A117944 Triangle begins %e A117944 1; %e A117944 0, 1; %e A117944 1, 0, 1; %e A117944 0, 0, 0, 1; %e A117944 0, 0, 0, 0, 1; %e A117944 0, 0, 0, 1, 0, 1; %e A117944 1, 0, 0, 0, 0, 0, 1; %e A117944 0, 1, 0, 0, 0, 0, 0, 1; %e A117944 1, 0, 1, 0, 0, 0, 1, 0, 1; %e A117944 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A117944 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A117944 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1; %t A117944 T[n_, k_]:= Mod[Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 2]; %t A117944 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 29 2021 *) %o A117944 (Sage) %o A117944 def A117944(n, k): return ( sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n)) )%2 %o A117944 flatten([[A117944(n, k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Oct 29 2021 %Y A117944 Cf. A039966, A117939, A117943, A117945. %K A117944 easy,nonn,tabl %O A117944 0,1 %A A117944 _Paul Barry_, Apr 05 2006