cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117949 Index of pentagonal numbers whose sum of divisors is square.

This page as a plain text file.
%I A117949 #25 Sep 13 2024 00:39:44
%S A117949 1,4,7,12,21,23,27,31,71,79,89,151,168,199,223,232,239,263,311,324,
%T A117949 336,345,359,390,463,479,497,540,599,743,751,823,858,863,911,991,1031,
%U A117949 1063,1103,1151,1302,1303,1343,1399,1471,1540,1583,1687,1759,1802,1823
%N A117949 Index of pentagonal numbers whose sum of divisors is square.
%C A117949 n such that A117948(n) is in A000290.
%H A117949 Amiram Eldar, <a href="/A117949/b117949.txt">Table of n, a(n) for n = 1..10000</a>
%e A117949 a(1) = 1 because sigma(1*(3*1-1)/2) = 1 = 1^2.
%e A117949 a(2) = 4 because sigma(4*(3*4-1)/2) = 36 = 6^2.
%e A117949 a(3) = 7 because sigma(7*(3*7-1)/2) = 144 = 12^2.
%e A117949 a(4) = 12 because sigma(12*(3*12-1)/2) = 576 = 24^2.
%e A117949 a(5) = 21 because sigma(21*(3*21-1)/2) = 1024 = 32^2.
%e A117949 a(6) = 23 because sigma(23*(3*23-1)/2) = 1296 = 36^2.
%e A117949 a(7) = 27 because sigma(27*(3*27-1)/2) = 3600 = 60^2.
%e A117949 a(8) = 31 because sigma(31*(3*31-1)/2) = 2304 = 48^2.
%e A117949 a(9) = 71 because sigma(71*(3*71-1)/2) = 11664 = 108^2.
%p A117949 with(numtheory): select(n-> sqrt(sigma(n*(3*n-1)/2))::integer, [$1..2200])[]; # _Emeric Deutsch_, Apr 06 2006
%t A117949 s = {}; Do[If[IntegerQ @ Sqrt @ DivisorSigma[1, (3 n - 1)*n/2], AppendTo[s, n]], {n, 1, 2000}]; s (* _Amiram Eldar_, Aug 17 2019 *)
%t A117949 Position[DivisorSigma[1,PolygonalNumber[5,Range[2000]]],_?(IntegerQ[ Sqrt[ #]]&)]//Flatten (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 23 2020 *)
%o A117949 (PARI) isok(n) = issquare(sigma(n*(3*n-1)/2)); \\ _Michel Marcus_, Aug 17 2019
%Y A117949 Cf. A000203, A000217, A000290, A000326, A074285, A083675, A117948.
%K A117949 easy,nonn
%O A117949 1,2
%A A117949 _Jonathan Vos Post_, Apr 04 2006
%E A117949 More terms from _Emeric Deutsch_, Apr 06 2006
%E A117949 a(0) removed by _Amiram Eldar_, Aug 17 2019