This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A117950 #89 Feb 16 2025 08:33:00 %S A117950 3,4,7,12,19,28,39,52,67,84,103,124,147,172,199,228,259,292,327,364, %T A117950 403,444,487,532,579,628,679,732,787,844,903,964,1027,1092,1159,1228, %U A117950 1299,1372,1447,1524,1603,1684,1767,1852,1939,2028,2119,2212,2307,2404,2503 %N A117950 a(n) = n^2 + 3. %C A117950 Nonnegative X values of solutions to the equation X^3 - (X + 3)^2 + X + 6 = Y^2. To prove that X = n^2 + 3: Y^2 = X^3 - (X + 3)^2 + X + 6 = X^3 - X^2 - 5X - 3 = (X - 3)(X^2 + 2X + 1) = (X - 3)*(X + 1)^2 it means: (X - 3) must be a perfect square, so X = n^2 + 3 and Y = n(n^2 + 4). - _Mohamed Bouhamida_, Nov 12 2007 %C A117950 An equivalent technique of integer factorization would work, for example, for the equation X^3 - 3*X^2 - 9*X - 5 = (X-5)(X+1)^2 = Y^2, looking for perfect squares of the form X - 5 = n^2. - _R. J. Mathar_, Nov 20 2007 %C A117950 Take a square array of (n+1) X (n+1) dots (which correspond to the vertices of a grid of n X n squares). Connect the dots with vertical and horizontal line segments of any length so that each dot is connected to each of its orthogonal neighbors, and so that no line segment crosses any previously drawn line segment. Then the minimum number of line segments is a(n), for n >= 1. - _Leroy Quet_, Apr 12 2009 %C A117950 a(n) is also the Wiener index of the double fan graph F(n). The double fan graph F(n) is defined as the graph obtained by joining each node of an n-node path graph with two additional nodes. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of the graph F(n) is (3n-1)t + (1/2)(n^2 - 3n + 4)t^2. Example: a(3)=12 because the corresponding double fan graph is the wheel graph on 5 nodes OABCD, O being the center of the wheel. Its Wiener index = number of edges + |AC| +|BD| = 8 + 2 + 2 = 12. - _Emeric Deutsch_, Sep 24 2010 %H A117950 Ivan Panchenko, <a href="/A117950/b117950.txt">Table of n, a(n) for n = 0..1000</a> %H A117950 B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., 60, 1996, 959-969. - _Emeric Deutsch_, Sep 24 2010 %H A117950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Near-SquarePrime.html">Near-Square Prime</a> %H A117950 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FanGraph.html">Fan Graph</a>. - _Emeric Deutsch_, Sep 24 2010 %H A117950 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A117950 G.f.: (3 - 5*x + 4*x^2)/(1-x)^3. - _R. J. Mathar_, Nov 20 2007 %F A117950 a(n) = A000290(n) + 3. - _Omar E. Pol_, Dec 20 2008 %F A117950 a(n) = ((n-3)^2 + 3*(n+1)^2)/4. - _Reinhard Zumkeller_, Feb 13 2009 %F A117950 a(n) = A132111(n-1,2) for n>1. - _Reinhard Zumkeller_, Aug 10 2007 %F A117950 a(n) = ceiling((n+1/n)^2), n>0. - _Vincenzo Librandi_, Oct 19 2011 %F A117950 a(n) = 2*n + a(n-1) - 1 (with a(0)=3). - _Vincenzo Librandi_, Nov 13 2010 %F A117950 a(n)*a(n-1) - 3 = (a(n)-n)^2 = A027688(n-1)^2. - _Bruno Berselli_, Dec 08 2011 %F A117950 From _Amiram Eldar_, Jul 21 2020: (Start) %F A117950 Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/6. %F A117950 Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*csch(sqrt(3)*Pi))/6. (End) %F A117950 From _Amiram Eldar_, Jan 29 2021: (Start) %F A117950 Product_{n>=0} (1 + 1/a(n)) = 2*csch(sqrt(3)*Pi)*sinh(2*Pi)/sqrt(3). %F A117950 Product_{n>=0} (1 - 1/a(n)) = sqrt(2/3)*csch(sqrt(3)*Pi)*sinh(sqrt(2)*Pi). (End) %F A117950 E.g.f.: exp(x)*(3 + x + x^2). - _Stefano Spezia_, Aug 26 2024 %t A117950 Table[n^2 + 3, {n, 0, 49}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 15 2008 *) %o A117950 (Sage) [lucas_number1(3,n,-3) for n in range(0, 51)] # _Zerinvary Lajos_, May 16 2009 %o A117950 (PARI) a(n)=n^2+3 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A117950 Cf. A000290, A027688, A028560, A005563, A132111. %Y A117950 For primes in this sequence see A049422. %K A117950 nonn,easy %O A117950 0,1 %A A117950 _Eric W. Weisstein_, Apr 04 2006 %E A117950 Edited by _N. J. A. Sloane_ Apr 15 2009 at the suggestion of _Leroy Quet_