This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118013 #13 Jul 13 2013 12:03:23 %S A118013 1,4,2,9,4,3,16,8,5,4,25,12,8,6,5,36,18,12,9,7,6,49,24,16,12,9,8,7,64, %T A118013 32,21,16,12,10,9,8,81,40,27,20,16,13,11,10,9,100,50,33,25,20,16,14, %U A118013 12,11,10,121,60,40,30,24,20,17,15,13,12,11,144,72,48,36,28,24,20,18,16,14 %N A118013 Triangle read by rows: T(n,k) = floor(n^2/k), 1<=k<=n. %C A118013 T(n,1) = A000290(n); T(n,n) = n; %C A118013 T(n,2) = A007590(n) for n>1; %C A118013 T(n,3) = A000212(n) for n>2; %C A118013 T(n,4) = A002620(n) for n>3; %C A118013 T(n,5) = A118015(n) for n>4; %C A118013 T(n,6) = A056827(n) for n>5; %C A118013 central terms give A008574: T(2*k-1,k) = 4*(k-1)+0^(k-1); %C A118013 row sums give A118014. %H A118013 Reinhard Zumkeller, <a href="/A118013/b118013.txt">Rows n=1..100 of triangle, flattened</a> %e A118013 Triangle begins: %e A118013 1, %e A118013 4, 2, %e A118013 9, 4, 3, %e A118013 16, 8, 5, 4, %o A118013 (PARI) T(n,k)=n^2\k \\ _Charles R Greathouse IV_, Jan 15 2012 %o A118013 (Haskell) %o A118013 a118013 n k = a118013_tabl !! (n-1) !! (k-1) %o A118013 a118013_row n = map (div (n^2)) [1..n] %o A118013 a118013_tabl = map a118013_row [1..] %o A118013 -- _Reinhard Zumkeller_, Jan 22 2012 %Y A118013 Cf. A010766. %K A118013 nonn,easy,tabl %O A118013 1,2 %A A118013 _Reinhard Zumkeller_, Apr 10 2006