cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118031 Decimal expansion of the sum of the reciprocals of the palindromic numbers A002113.

This page as a plain text file.
%I A118031 #46 Feb 16 2025 08:33:00
%S A118031 3,3,7,0,2,8,3,2,5,9,4,9,7,3,7,3,3,2,0,4,9,2,1,5,7,2,9,8,5,0,5,5,3,1,
%T A118031 1,2,3,0,7,1,4,5,7,7,7,9,4,5,2,7,7,8,4,9,1,3,3,5,0,6,8,9,2,5,9,8,2,5,
%U A118031 1,9,7,6,0,3,4,9,4,7,6,7,5,8,9,7,0,3,0,1
%N A118031 Decimal expansion of the sum of the reciprocals of the palindromic numbers A002113.
%C A118031 The sum using all palindromic numbers < 10^8 is 3.37000183240... Extrapolating using Wynn's epsilon method gives a value near 3.37018... - _Eric W. Weisstein_, May 14 2006
%H A118031 Joseph Myers, <a href="/A118031/b118031.txt">Table of n, a(n) for n = 1..1001</a>
%H A118031 Joseph Myers, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-June/013186.html">Polynomial-time algorithm</a>.
%H A118031 Michael Penn, <a href="https://www.youtube.com/watch?v=YrO9OjTFSQs">Does this series converge??</a>, YouTube video, 2021.
%H A118031 Radovan Potůček, <a href="https://doi.org/10.1007/978-3-030-61334-1_18">Formulas for the Sums of the Series of Reciprocals of the Polynomial of Degree Two with Non-zero Integer Roots</a>, Algorithms as a Basis of Modern Applied Mathematics, Studies in Fuzziness and Soft Computing book series (STUDFUZZ, Vol. 404) Springer (2021), 363-382.
%H A118031 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>.
%F A118031 a(n) = Sum_{palindromes p>0} 1/p.
%F A118031 a(n) = Sum_{n>=2} 1/A002113(n).
%e A118031 3.3702832594973733204921572985...
%t A118031 NextPalindrome[n_] := Block[{l = Floor[ Log[10, n] + 1], idn = IntegerDigits@ n}, If[ Union@ idn == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] > FromDigits[ Take[idn, -Ceiling[l/2]]], FromDigits[Join[Take[idn, Ceiling[l/2]], Reverse[Take[idn, Floor[l/2]]]]], idfhn = FromDigits[Take[idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits@ idfhn, Drop[ Reverse[ IntegerDigits@ idfhn], Mod[l, 2]]]]]]]]; pal = 1; sm = 0; Do[ While[pal < 10^n + 1, sm = N[sm + 1/pal, 128]; pal = NextPalindrome@ pal]; Print[{n, sm}], {n, 0, 17}] (* _Robert G. Wilson v_, Oct 20 2010 *)
%Y A118031 Cf. A002113.
%Y A118031 Similar sequences: A118064, A194097, A244162.
%K A118031 cons,base,nonn
%O A118031 1,1
%A A118031 _Martin Renner_, May 11 2006
%E A118031 Corrected by _Eric W. Weisstein_, May 14 2006
%E A118031 Corrected and extended by _Robert G. Wilson v_, Oct 20 2010
%E A118031 Corrected and extended by _Joseph Myers_, Jun 26 2014