This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118062 #7 Jul 11 2015 11:06:52 %S A118062 1,265721,75047458863267833,938093235790847912650094635296999121, %T A118062 2771420766426289313598405374054613260285749630619149892803, %U A118062 83546357082134777747819786589906868700938637689935705237433756853637190925073724793683 %N A118062 Numerator of Sum_{i=1..n} 1/(t(i)^t(i)) where t(i) = i-th 3-almost prime. %C A118062 3-almost prime analog of A117579. Semiprime analog of A117579 is A118056. Fractions are 1/16777216, 265721/4458050224128, 75047458863267833/1259085058409489202413568, 938093235790847912650094635296999121 / 15738563230118615030169600000000000000000000, 2771420766426289313598405374054613260285749630619149892803 / 46496637333593157266125580467610571799579852800000000000000000000. %F A118062 a(n) = Numerator of Sum_{i=1..n} 1/(3almostprime(i)^3almostprime(i)). %F A118062 a(n) = Numerator of Sum_{i=1..n} 1/(A014612(i)^A014612(i)). %F A118062 a(n) = Numerator of Sum_{i=1..n} 1/A114967(n). %e A118062 a(2) = 265721 because (1/A014612(1)^A014612(1)) + (1/A014612(2)^A014612(2))= (1/(8^8)) + (1/(12^12)) = (1/16777216) + (1/8916100448256) = 265721/4458050224128. %Y A118062 Denominators = A118063. Cf. A001358, A014612, A051674, A114850, A114967, A117579, A118056. %K A118062 easy,frac,nonn %O A118062 1,2 %A A118062 _Jonathan Vos Post_, Apr 11 2006