cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118064 Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant).

This page as a plain text file.
%I A118064 #47 Feb 16 2025 08:33:00
%S A118064 1,3,2,3,9,8,2,1,4,6,8,0,6
%N A118064 Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant).
%C A118064 From _Robert G. Wilson v_, Nov 01 2010: (Start)
%C A118064 n \ sum to 10^n
%C A118064 02 1.267099567099567099567099567099567099567099567099567099567099567099567
%C A118064 03 1.320723244590290964212793334437872849720871258315369002493912638038324
%C A118064 05 1.323748402250648554164425746280035962754669829327727800040192015109270
%C A118064 07 1.323964105671202458016249150576217276147952428601889817773483085610332
%C A118064 09 1.323980718065525060936354534562000413901564393192688451911141729415146
%C A118064 11 1.323982026479475203850120990923294207966175748395470136325039323549015
%C A118064 13 1.323982136437462724794656629740867909978221153827990721566573347887836
%C A118064 15 1.323982145891606234777299440047139038371441916546100653011463101470839
%C A118064 17 1.323982146724859090645464845257681674740147563533254654075059843860490
%C A118064 19 1.323982146799188851138232927173756400348958236915409881890097448921521
%C A118064 21 1.323982146805857558347279363344557427339916178257233985191868031567947 (End)
%H A118064 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_056.htm">Problems & Puzzles: Puzzle 056 - Honaker's Constant</a>.
%H A118064 Eric Weisstein, <a href="https://mathworld.wolfram.com/PalindromicPrime.html">Palindromic Prime</a>.
%F A118064 Equals Sum_{p} 1/p, where p ranges over the palindromic primes.
%e A118064 1.323982146806...
%t A118064 (* first obtain nextPalindrome from A007632 *) s = 1/11; c = 1; pp = 1; Do[ While[pp < 10^n, If[PrimeQ@ pp, c++; s = N[s + 1/pp, 64]]; pp = NextPalindrome@ pp]; If[ OddQ@ n, pp = 10^(n + 1); Print[{s, n, c}]], {n, 17}] (* _Robert G. Wilson v_, May 31 2009 *)
%t A118064 generate[n_] := Block[{id = IntegerDigits@n, insert = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; sm = N[Plus @@ (1/{2, 3, 5, 7, 11}), 64]; k = 1; Do [While[k < 10^n, sm = N[sm + Plus @@ (1/Select[ generate@k, PrimeQ]), 128]; k++ ]; Print[{2 n + 1, sm}], {n, 9}] (* _Robert G. Wilson v_, Nov 01 2010 *)
%Y A118064 Cf. A002385, A160910, A181442, A050251, A118031, A194097.
%K A118064 cons,base,nonn,hard,more
%O A118064 1,2
%A A118064 _Martin Renner_, May 11 2006
%E A118064 Corrected by _Eric W. Weisstein_, May 14 2006
%E A118064 More terms from _Robert G. Wilson v_, Nov 01 2010
%E A118064 Entry revised by _N. J. A. Sloane_, May 05 2013