This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118073 #4 Mar 30 2012 18:52:25 %S A118073 1,49,52,70,86,91,94,95,116,118,121,124,125,133,135,154,160,161,162, %T A118073 172,175,177,185,195,203,206,207,208,219,222,225,236,248,250,253,255, %U A118073 261,262,267,275,286,288,298,300,301,306,315,319,321,323,326,327,328,329 %N A118073 Nonprimes of the form r(r(r(r(r(r(n)+1)+1)+1)+1)+1)+1, where A141468(n)=r(n)=n-th nonprime. %e A118073 If n = 1, then %e A118073 r(r(r(r(r(r(1)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(0+1)+1)+1)+1)+1)+1 = r(r(r(r(r(1)+1)+1)+1)+1)+1 = r(r(r(r(0+1)+1)+1)+1)+1 = r(r(r(r(1)+1)+1)+1)+1 = r(r(r(0+1)+1)+1)+1 = r(r(r(1)+1)+1)+1 = r(r(0+1)+1)+1 = r(r(1)+1)+1 = r(0+1)+1 = r(1)+1 = 0+1 = 1 = a(1). %e A118073 If n = 2, then %e A118073 r(r(r(r(r(r(2)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(1+1)+1)+1)+1)+1)+1 = r(r(r(r(r(2)+1)+1)+1)+1)+1 = r(r(r(r(1+1)+1)+1)+1)+1 = r(r(r(r(2)+1)+1)+1)+1 = r(r(r(1+1)+1)+1)+1 = r(r(r(2)+1)+1)+1 = r(r(1+1)+1)+1 = r(r(2)+1)+1 = r(1+1)+1 = r(2)+1 = 1+1 = 2 %e A118073 (prime). %e A118073 If n = 3, then %e A118073 r(r(r(r(r(r(3)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(4+1)+1)+1)+1)+1)+1 = r(r(r(r(r(5)+1)+1)+1)+1)+1 = r(r(r(r(8+1)+1)+1)+1)+1 = r(r(r(r(9)+1)+1)+1)+1 = r(r(r(14+1)+1)+1)+1 = r(r(r(15)+1)+1)+1 = r(r(22+1)+1)+1 = r(r(23)+1)+1 = r(33+1)+1 = r(34)+1 = 48+1 = 49 = a(2). %e A118073 If n = 4, then %e A118073 r(r(r(r(r(r(4)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(6+1)+1)+1)+1)+1)+1 = r(r(r(r(r(7)+1)+1)+1)+1)+1 = r(r(r(r(10+1)+1)+1)+1)+1 = r(r(r(r(11)+1)+1)+1)+1 = r(r(r(16+1)+1)+1)+1 = r(r(r(17)+1)+1)+1 = r(r(25+1)+1)+1 = r(r(26)+1)+1 = r(36+1)+1 = r(37)+1 = 51+1 = 52 = a(3). %e A118073 If n = 5, then %e A118073 r(r(r(r(r(r(5)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(8+1)+1)+1)+1)+1)+1 = r(r(r(r(r(9)+1)+1)+1)+1)+1 = r(r(r(r(14+1)+1)+1)+1)+1 = r(r(r(r(15)+1)+1)+1)+1 = r(r(r(22+1)+1)+1)+1 = r(r(r(23)+1)+1)+1 = r(r(33+1)+1)+1 = r(r(34)+1)+1 = r(48+1)+1 = r(49)+1 = 66+1 = 67 %e A118073 (prime). %e A118073 If n = 6, then %e A118073 r(r(r(r(r(r(6)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(9+1)+1)+1)+1)+1)+1 = r(r(r(r(r(10)+1)+1)+1)+1)+1 = r(r(r(r(15+1)+1)+1)+1)+1 = r(r(r(r(16)+1)+1)+1)+1 = r(r(r(24+1)+1)+1)+1 = r(r(r(25)+1)+1)+1 = r(r(35+1)+1)+1 = r(r(36)+1)+1 = r(50+1)+1 = r(51)+169+1 = 70 = a %e A118073 (4). %e A118073 If n = 7, then %e A118073 r(r(r(r(r(r(7)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(10+1)+1)+1)+1)+1)+1 = r(r(r(r(r(11)+1)+1)+1)+1)+1 = r(r(r(r(16+1)+1)+1)+1)+1 = r(r(r(r(17)+1)+1)+1)+1 = r(r(r(25+1)+1)+1)+1 = r(r(r(26)+1)+1)+1 = r(r(36+1)+1)+1 = r(r(37)+1)+1 = r(51+1)+1 = r(52)+1 = 70+1 = 71 %e A118073 (prime). %e A118073 If n = 8, then %e A118073 r(r(r(r(r(r(8)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(12+1)+1)+1)+1)+1)+1 = r(r(r(r(r(13)+1)+1)+1)+1)+1 = r(r(r(r(20+1)+1)+1)+1)+1 = r(r(r(r(21)+1)+1)+1)+1 = r(r(r(30+1)+1)+1)+1 = r(r(r(31)+1)+1)+1 = r(r(44+1)+1)+1 = r(r(45)+1)+1 = r(62+1)+1 = r(63)+1 = 85+1 = 86 = a %e A118073 (5). %e A118073 If n = 9, then %e A118073 r(r(r(r(r(r(9)+1)+1)+1)+1)+1)+1 = r(r(r(r(r(14+1)+1)+1)+1)+1)+1 = r(r(r(r(r(15)+1)+1)+1)+1)+1 = r(r(r(r(22+1)+1)+1)+1)+1 = r(r(r(r(23)+1)+1)+1)+1 = r(r(r(33+1)+1)+1)+1 = r(r(r(34)+1)+1)+1 = r(r(48+1)+1)+1 = r(r(49)+1)+1 = r(66+1)+1 = r(67)+1 = 90+1 = 91 = a(6), %e A118073 etc. %Y A118073 Cf. A000040, A141468. %K A118073 nonn %O A118073 1,2 %A A118073 _Juri-Stepan Gerasimov_, Aug 25 2008 %E A118073 165 removed, 206 added, 257 removed by _R. J. Mathar_, Sep 05 2008