A118082 Number of partitions of n such that largest part k occurs floor(k/2) times.
1, 0, 1, 2, 2, 3, 3, 4, 5, 6, 8, 10, 12, 15, 19, 22, 27, 32, 39, 45, 54, 63, 75, 87, 102, 118, 139, 160, 186, 214, 248, 284, 328, 375, 430, 490, 561, 637, 727, 824, 935, 1058, 1199, 1352, 1528, 1720, 1938, 2177, 2448, 2743, 3079, 3445, 3856, 4307, 4813, 5365, 5985
Offset: 0
Keywords
Examples
a(8)=5 because we have [4,4],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1] and [2,1,1,1,1,1,1].
Programs
-
Maple
g:=sum(x^(k*floor(k/2))/product(1-x^j,j=1..k-1),k=1..15): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60);
Formula
G.f.=sum(x^(k*floor(k/2))/product(1-x^j, j=1..k-1), k=1..infinity).
Comments