This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118094 #35 Aug 23 2022 14:01:03 %S A118094 1,6,33,285,2115,16533,126501,972441,7451679,57167260,438644841, %T A118094 3369276867,25905339483,199408447446,1536728368389,11856420991413, %U A118094 91579955286519,708146055343668,5481535740059577,42473608898628639 %N A118094 Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps). %H A118094 A. Mednykh and R. Nedela, <a href="http://garsia.math.yorku.ca/fpsac06/papers/9_ps_or_pdf.pdf">Counting unrooted hypermaps on closed orientable surface</a>, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA). %H A118094 A. Mednykh and R. Nedela, <a href="http://dx.doi.org/10.1016/j.disc.2009.03.033">Enumeration of unrooted hypermaps of a given genus</a>, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009] %H A118094 Mednykh, A.; Nedela, R. <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 3. %H A118094 Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-efficient generation of nonisomorphic maps and hypermaps</a> %H A118094 T. R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3 %p A118094 Phi2 := proc(l) %p A118094 local a,k ; %p A118094 a := 0 ; %p A118094 for k in numtheory[divisors](l) do %p A118094 a := a+numtheory[mobius](l/k)*k^2 ; %p A118094 end do: %p A118094 a ; %p A118094 end proc: %p A118094 h0 := proc(m) %p A118094 if type(m,integer) then %p A118094 binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ; %p A118094 else %p A118094 0; %p A118094 end if; %p A118094 end proc: %p A118094 h1 := proc(n) %p A118094 local a; %p A118094 a := 0 ; %p A118094 if n >= 3 and type(n,integer) then %p A118094 a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ; %p A118094 end if; %p A118094 a/3 ; %p A118094 end proc: %p A118094 A118094 := proc(n) %p A118094 binomial(n/2+2,4)*h0(n/2) ; %p A118094 %+2*binomial(n/3+2,3)*h0(n/3) ; %p A118094 %+6*binomial(n/4+2,3)*h0(n/4) ; %p A118094 a := %+12*binomial(n/6+2,3)*h0(n/6) ; %p A118094 for l in numtheory[divisors](n) do %p A118094 if modp(n,l) = 0 then %p A118094 a := a+h1(n/l)*Phi2(l) ; %p A118094 end if; %p A118094 end do: %p A118094 a/n ; %p A118094 end proc: %p A118094 seq(A118094(n),n=3..14) ; # _R. J. Mathar_, Dec 17 2014 %t A118094 h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] + 2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* _Jean-François Alcover_, Dec 18 2014, translated from PARI *) %o A118094 (PARI) h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0); %o A118094 h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<<k)/3; %o A118094 phi2(n) = sumdiv(n, d, moebius(n/d)*d^2);a(n) = (binomial(n/2+2, 4)*h0(n/2) + 2*binomial(n/3+2, 3)*h0(n/3) + 6*binomial(n/4+2, 3)*h0(n/4) + 12*binomial(n/6+2, 3)*h0(n/6) + sumdiv(n, d, phi2(d)*h1(n/d)))/n; \\ _Michel Marcus_, Dec 11 2014 ; corrected by _Charles R Greathouse IV_, Dec 17 2014 %Y A118094 Cf. A090371, A118093. %K A118094 nonn %O A118094 3,2 %A A118094 _Valery A. Liskovets_, Apr 13 2006