This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118111 #27 Feb 16 2025 08:33:00 %S A118111 1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1, %T A118111 1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0, %U A118111 1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,1 %N A118111 Binary representation of n-th iteration of the Rule 190 elementary cellular automaton starting with a single black cell. %C A118111 Row n has length 2*n+1. - _Hans Havermann_, May 26 2002 %H A118111 Robert Price, <a href="/A118111/b118111.txt">Table of n, a(n) for n = 0..9999</a> %H A118111 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule190.html">Rule 190</a> %H A118111 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A118111 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A118111 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A118111 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %e A118111 From _Michael De Vlieger_, Aug 21 2020: (Start) %e A118111 Irregular array begins: %e A118111 0: 1 %e A118111 1: 1 1 1 %e A118111 2: 1 1 1 0 1 %e A118111 3: 1 1 1 0 1 1 1 %e A118111 4: 1 1 1 0 1 1 1 0 1 %e A118111 5: 1 1 1 0 1 1 1 0 1 1 1 %e A118111 6: 1 1 1 0 1 1 1 0 1 1 1 0 1 %e A118111 7: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 %e A118111 8: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 %e A118111 9: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 %e A118111 ... (End) %t A118111 With[{nn = 9}, MapIndexed[#1[[#2 + 1 ;; 2 nn - #2 + 1]] & @@ {#1, nn - First[#2] + 1} &, CellularAutomaton[190, {{1}, 0}, nn]]] // Flatten (* _Michael De Vlieger_, Aug 21 2020 *) %Y A118111 Cf. A265688 (binary rows), A037576 (decimal rows), A032766 (num 1's). %K A118111 nonn,tabf %O A118111 0,1 %A A118111 _Eric W. Weisstein_, Apr 13 2006