This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118166 #7 Feb 16 2025 08:33:00 %S A118166 1,3,11,43,35,162,311,1203,2405,2769,4257,5772,9639,18711,13860,40635, %T A118166 39270,61425,45045,75075,107415,53865,159075,239085,197505,225225, %U A118166 137445,621621,373065,634095,812175,412335,1036035,1119195,883575,1673595 %N A118166 Smallest term in the Hofstadter sequence A005243 having exactly n representations as sum of consecutive earlier terms. %C A118166 a(n) = A005243(A118165(n)). %H A118166 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HofstadterSequences.html">Hofstadter Sequences</a> %e A118166 a(8) = A005243(A118165(8)) = A005243(2210) = 2405: %e A118166 #1: 1203 + 1202 = Sum(A005243[1049:1050]) = 2405, %e A118166 #2: 803 + 802 + 800 = Sum(A005243[671:673]) = 2405, %e A118166 #3: 483 + 482 + 481 + 480 + 479 = Sum(A005243[382:386]), %e A118166 #4: 306 + 304 + 302 + 301 + 300 + 299 + 297 + 296 = %e A118166 Sum(A005243[224:231]) = 2405, %e A118166 #5: 224 + 223 + 222 + 221 + 220 + 219 + 218 + 216 + 215 + %e A118166 214 + 213 = Sum(A005243[153:163]) = 2405, %e A118166 #6: 145 + 143 + 142 + 141 + 140 + 139 + 138 + 137 + 135 + %e A118166 134 + 132 + 130 + 129 + 127 + 126 + 124 + 122 + 121 = %e A118166 Sum(A005243[82:99]) = 2405, %e A118166 #7: 129 + 127 + 126 + 124 + 122 + 121 + 119 + 118 + 117 + %e A118166 116 + 115 + 113 + 112 + 111 + 110 + 108 + 106 + 105 + %e A118166 104 + 102 + 100 = Sum(A005243[67:87]) = 2405, %e A118166 #8: 95 + 94 + 93 + 92 + 91 + 90 + 88 + 87 + 86 + 84 + 82 + %e A118166 81 + 80 + 78 + 77 + 76 + 75 + 73 + 72 + 71 + 70 + 69 + 68 + %e A118166 67 + 65 + 62 + 60 + 59 + 58 + 57 + 54 + 51 = %e A118166 Sum(A005243[32:63]) = 2405. %Y A118166 Cf. A118164. %K A118166 nonn %O A118166 0,2 %A A118166 _Reinhard Zumkeller_, Apr 13 2006 %E A118166 a(15)-a(35) from _Donovan Johnson_, Feb 16 2011