This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118182 #8 Sep 08 2022 08:45:25 %S A118182 1,1,2,4,11,37,164,1000,8021,81001,1076006,19683244,473632031, %T A118182 14349084877,571833704648,31381448626000,2265367321680041, %U A118182 205893684435186001,24615565942378859210,4052605390737766057684 %N A118182 Antidiagonal sums of triangle A118180: a(n) = Sum_{k=0..[n/2]} (3^k)^(n-2*k) for n>=0. %H A118182 G. C. Greubel, <a href="/A118182/b118182.txt">Table of n, a(n) for n = 0..125</a> %F A118182 G.f.: A(x) = Sum_{n>=0} x^n/(1-3^n*x^2). %F A118182 a(2*n) = Sum_{k=0..n} (3^k)^(2*(n-k)). %F A118182 a(2*n+1) = Sum_{k=0..n} (3^k)^(2*(n-k) +1). %e A118182 A(x) = 1/(1-x^2) + x/(1-3x^2) + x^2/(1-9x^2) + x^3/(1-27x^2) +... %e A118182 = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 37*x^5 + 164*x^6 + 1000*x^7 +... %t A118182 Table[Sum[3^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* _G. C. Greubel_, Jun 29 2021 *) %o A118182 (PARI) a(n)=sum(k=0, n\2, (3^k)^(n-2*k) ); %o A118182 (Magma) [(&+[3^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // _G. C. Greubel_, Jun 29 2021 %o A118182 (Sage) [sum(3^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # _G. C. Greubel_, Jun 29 2021 %Y A118182 Cf. A118180 (triangle), A118181 (row sums), A118183, A118184. %K A118182 nonn %O A118182 0,3 %A A118182 _Paul D. Hanna_, Apr 15 2006