cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118207 Expansion of Product_{k>=1} (1 + x^k)^lambda(k) where lambda(k) is the Liouville function, A008836.

This page as a plain text file.
%I A118207 #29 Sep 02 2023 20:31:35
%S A118207 1,1,-1,-2,1,2,0,-2,-2,0,5,2,-7,-6,7,9,0,-10,-9,4,17,2,-18,-12,14,21,
%T A118207 5,-26,-25,14,41,4,-38,-35,18,53,23,-56,-54,31,86,15,-78,-85,34,112,
%U A118207 41,-110,-102,49,158,40,-138,-150,68,195,68,-191,-190,69,279,89,-217,-253,102,327,122,-336,-335,118,462,142,-361,-430,170
%N A118207 Expansion of Product_{k>=1} (1 + x^k)^lambda(k) where lambda(k) is the Liouville function, A008836.
%H A118207 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cyclotomic_polynomial">Cyclotomic polynomial</a>
%H A118207 Wikipedia, <a href="https://en.wikipedia.org/wiki/Liouville_function">Liouville function</a>
%F A118207 From _Peter Bala_, Apr 05 2023: (Start)
%F A118207 G.f.: A(x) = Product_{k >= 1} C(k,x^(2*k)) / C(k,x^k) = Product_{k >= 1} C(2*k,x^k) / C(4*k,x^k) = -Product_{k >= 1} C(k,x^(2*k)) * C(2*k,x^k), where C(k,x) denotes the k-th cyclotomic polynomial.
%F A118207 Conjecture: A(x^2) = Product_{k >= 1} C(k,x^k) * C(k,(-x)^k). (End)
%t A118207 nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; CoefficientList[ Series[ Product[ (1 + x^k)^lambda[k], {k, 1, nmax} ], {x, 0, nmax} ], x ]
%t A118207 (* From version 7 on *) nmax = 80; CoefficientList[ Series[ Product[ (1 + x^k)^LiouvilleLambda[k], {k, 1, nmax}], {x, 0, nmax}], x] (* _Jean-François Alcover_, Jul 30 2013 *)
%Y A118207 Cf. A117210, A118205, A118206, A118208, A118209.
%K A118207 sign,easy
%O A118207 0,4
%A A118207 _Stuart Clary_, Apr 15 2006