This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118244 #2 Mar 30 2012 17:25:13 %S A118244 1,2,1,5,5,2,12,21,18,6,29,80,116,84,24,70,290,642,774,480,120 %N A118244 Triangle, rows = inverse binomial transforms of sequences generated from the Pell polynomials. %C A118244 Columns of A118243 are f(x), the Pell polynomials. (terms of A038137 considered as Pell polynomial coefficients): 1; (x + 1); (x^2 + 2x + 2); (x^3 + 3x^2 + 5x + 3); (x^4 + 4x^3 + 9x^2 + 10x + 5);...For example, (x^3 + 3x^2 + 5x + 3), (f(x), x=1,2,3...), generates column 3 of triangle A118243: (12, 33, 72, 135, 228, 357...); and the inverse binomial transform of (12, 33, 72...) = row 3 of the triangle: (12, 21, 18, 6). The array of A118243 is obtained by deleting the Fibonacci sequence (first row of the A073133 array). %F A118244 n-th row of the triangle = inverse binomial transform of n-th column of A118243. %e A118244 Row 3 of the triangle = (5, 5, 2), = inverse binomial transform of column 3 of A118243: (5, 10, 17, 26, 37...). Example: 17 = 1*2 + 1*5 + 2*5 = 2 + 5 + 10. %e A118244 First few rows of the triangle are: %e A118244 1; %e A118244 2, 1; %e A118244 5, 5, 2; %e A118244 12, 21, 18, 6; %e A118244 29, 80, 116, 84, 24; %e A118244 70, 290, 642, 774, 480, 120; %e A118244 ... %Y A118244 Cf. A038137, A118243, A073133. %K A118244 nonn,tabl %O A118244 0,2 %A A118244 _Gary W. Adamson_, Apr 17 2006