A118250 The least nonnegative integer whose reversed binary representation does not occur in the concatenation of the reversed binary representations of all preceding terms.
0, 1, 3, 4, 5, 8, 10, 13, 15, 16, 18, 23, 24, 32, 35, 36, 38, 43, 55, 64, 66, 68, 70, 75, 76, 79, 83, 85, 88, 91, 95, 97, 116, 119, 120, 127, 128, 130, 132, 136, 140, 143, 147, 149, 150, 155, 157, 158, 163, 169, 170, 175, 176, 182, 186, 192, 196, 208
Offset: 0
Examples
The concatenation of the reversed binary representation of the first 5 terms (0, 1, 3, 4, 5) is concat(0,1,11,001,101)=0111001101. The reversed binary representation of the yet unused numbers 2,6,7,8,... are 01,011,111,0001,... It is seen that only the last of these four strings is not yet a substring in the above, therefore a(5)=8.
Links
- Rainer Rosenthal, Table of n, a(n) for n = 0..9999
Crossrefs
Programs
-
Mathematica
a = {{0}}; Do[k = 1; While[SequenceCount[Flatten@ a, Set[m, Reverse@ IntegerDigits[k, 2]]] > 0, k++]; AppendTo[a, m], {i, 57}]; Map[FromDigits[#, 2] &@ Reverse@ # &, a] (* Michael De Vlieger, Sep 19 2017 *)
-
PARI
A118250(n,show=0,a=0)={my(c=[a],S=[],L); for(k=1,n, show && print1(a","); while( setsearch(S,binary(a++)),); c=concat(binary(a),c); S=[]; for(i=0,#c-L=#binary(a), c[i+1] & for(j=i+L,min(i+L+1,#c), S=setunion(S,Set(t=[vecextract(c,2^j-2^i)])))));a} \\ M. F. Hasler, Dec 29 2012
Extensions
More terms from Graeme McRae, Apr 19 2006
Explicit definition from M. F. Hasler, Dec 29 2012
Comments