cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118252 The least positive integer whose reversed binary representation does not occur in the concatenation of the reversed binary representations of all preceding terms.

This page as a plain text file.
%I A118252 #20 Aug 12 2023 05:13:32
%S A118252 1,2,3,4,8,10,11,12,15,16,22,24,27,32,35,36,38,43,44,54,59,64,66,70,
%T A118252 76,79,83,85,88,91,95,97,99,116,122,127,128,130,132,136,140,147,148,
%U A118252 150,155,158,163,169,170,175,176,179,182,184,192,196,201,217,232
%N A118252 The least positive integer whose reversed binary representation does not occur in the concatenation of the reversed binary representations of all preceding terms.
%C A118252 See the variant A118250 for comments and examples.
%H A118252 Michael De Vlieger, <a href="/A118252/b118252.txt">Table of n, a(n) for n = 1..10000</a>
%t A118252 a = {1}; b = {1}; Do[k = b[[i - 1]] + 1; While[SequenceCount[Flatten@ a, Set[d, Reverse@ IntegerDigits[k, 2]]] != 0, k++]; a = Join[a, d]; AppendTo[b, k], {i, 2, 59}]; b (* _Michael De Vlieger_, Aug 21 2017 *)
%o A118252 (PARI) A118252(n,show=0,a=1)={my(c=[a],S=[],L); for(k=1,n, show & print1(a","); while( setsearch(S,binary(a++)),); c=concat(binary(a),c); S=[]; for(i=0,#c-L=#binary(a), c[i+1] & for(j=i+L,min(i+L+1,#c), S=setunion(S,Set(t=[vecextract(c,2^j-2^i)])))));a}  \\ _M. F. Hasler_, Dec 29 2012
%Y A118252 Cf. A118248 (variant without reversal), A118250 (the same with a(0)=0), A118251 (concatenation of terms in binary).
%Y A118252 Cf. A190896.
%K A118252 easy,nonn
%O A118252 1,2
%A A118252 _Leroy Quet_, Apr 18 2006
%E A118252 More terms from _Graeme McRae_, Apr 19 2006
%E A118252 Explicit definition from _M. F. Hasler_, Dec 29 2012