This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118273 #26 Feb 16 2025 08:33:01 %S A118273 1,5,3,9,6,0,0,7,1,7,8,3,9,0,0,2,0,3,8,6,9,1,0,6,3,4,1,4,6,7,1,8,8,6, %T A118273 5,4,8,3,9,3,6,0,4,6,7,0,0,5,3,6,7,1,6,6,9,3,8,2,9,3,9,5,3,7,2,9,0,6, %U A118273 0,7,1,2,6,1,4,1,1,5,5,5,8,8,5,1,6,5,7,4,3,8,8,2,2,8,6,6,5,4,0,0,6,0,0,5,5 %N A118273 Decimal expansion of (4/3)^(3/2). %C A118273 The volume of the cube inscribed in the unit-radius sphere. - _Amiram Eldar_, Jun 02 2023 %D A118273 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.24, p. 412. %H A118273 Elliott H. Lieb, <a href="http://dx.doi.org/10.1103/PhysRev.162.162">Residual entropy of square ice</a>, Phys. Rev. 162 (1967) 162-172. %H A118273 James Propp, <a href="http://faculty.uml.edu/jpropp/faces.pdf">The many faces of alternating-sign matrices</a>, 2002. %H A118273 Scenta server, <a href="http://scenta.co.uk/tcaep/science/constant/details/Lieb%27s%20Square%20Ice%20Constant.xml">Lieb's square ice constant</a>. [Broken link] %H A118273 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LiebsSquareIceConstant.html">Lieb's Square Ice Constant</a>. %H A118273 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lieb%27s_square_ice_constant">Lieb's square ice constant</a>. %H A118273 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A118273 Equals 8 * A020784. %e A118273 1.539600717839002038... %p A118273 evalf(sqrt((4/3)^3)) ; # _R. J. Mathar_, Mar 29 2012 %t A118273 RealDigits[(4/3)^(3/2),10,120][[1]] (* _Harvey P. Dale_, Aug 06 2015 *) %o A118273 (PARI) (4/3)^(3/2) \\ _Stefano Spezia_, Dec 15 2024 %Y A118273 Cf. A020784, A054759. %Y A118273 Cf. A122553 (octahedron), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron). %K A118273 nonn,cons,easy %O A118273 1,2 %A A118273 _Eric W. Weisstein_, Apr 21 2006