cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118322 Decimal expansion of perimeter of the closed portion of the bow curve.

This page as a plain text file.
%I A118322 #16 Apr 07 2025 10:06:39
%S A118322 1,9,2,1,5,1,1,3,6,5,1,7,2,5,1,2,5,7,0,1,5,6,2,9,9,8,2,6,0,5,9,7,4,0,
%T A118322 8,3,6,5,7,6,1,3,0,4,9,0,5,2,7,6,2,4,2,5,5,4,5,4,4,1,5,7,6,4,8,3,1,8,
%U A118322 9,3,1,0,5,4,6,3,2,7,7,9,6,1,4,7,0,5,8,3,9,5,1,8,6,4,2,9,0,2,0,5,5,2,6,0,4
%N A118322 Decimal expansion of perimeter of the closed portion of the bow curve.
%C A118322 Writing x=r*cos(phi), y=r*sin(phi), r=sin(phi)*(1-2*sin^2(phi))/cos^4(phi) in circular coordinates gives the arc length of one wing of Integral_{phi=0..Pi/4} sqrt((dx/dphi)^2 + (dy/dphi)^2) dphi = Integral_{s=0..1/sqrt(2)} sqrt(1-5*s^2+20*s^6) / (1-s^2)^3 ds. - _R. J. Mathar_, Mar 23 2010
%H A118322 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Bow.html">Bow</a>
%e A118322 1.9215113651725125701...
%p A118322 Digits := 120 : f := 2*sqrt(1-5*x^2+20*x^6)/(1-x^2)^3 ; Int(f,x=0..1/sqrt(2.0)) ; x := evalf(%) ; # _R. J. Mathar_, Mar 23 2010
%t A118322 f[x_] := 2*Sqrt[1-5*x^2+20*x^6]/(1-x^2)^3; First[ RealDigits[ NIntegrate[f[x], {x, 0, 1/Sqrt[2]}, WorkingPrecision -> 120], 10, 105]](* _Jean-François Alcover_, Jun 08 2012, after _R. J. Mathar_ *)
%K A118322 nonn,cons
%O A118322 1,2
%A A118322 _Eric W. Weisstein_, Apr 23 2006
%E A118322 More digits from _R. J. Mathar_, Mar 23 2010