This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118353 #10 Feb 19 2021 09:45:27 %S A118353 1,3,21,163,1353,11760,105681,973953,9154821,87428388,845894700, %T A118353 8273978100,81682757317,812829371205,8144563709391,82104333340467, %U A118353 832125695906313,8473862660311392,86661931504395228,889705959333345756 %N A118353 Semi-diagonal (two rows below central terms) of pendular triangle A118350 and equal to the self-convolution cube of the central terms (A118351). %H A118353 G. C. Greubel, <a href="/A118353/b118353.txt">Table of n, a(n) for n = 0..500</a> %t A118353 T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] - 3*T[n-1, k-1] + 3*T[n, k-1] + T[n+1, k-1] ]]; %t A118353 Table[T[n, n-3], {n, 3, 30}] (* _G. C. Greubel_, Feb 18 2021 *) %o A118353 (PARI) my(x='x+O('x^33)); Vec((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)))/2/(1-3*x))/x)^3) %o A118353 (Sage) %o A118353 @CachedFunction %o A118353 def T(n, k): %o A118353 if (k<0 or n<k): return 0 %o A118353 elif (k==0): return 1 %o A118353 elif (k==n): return 0 %o A118353 else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1) %o A118353 [T(n,n-3) for n in (3..30)] # _G. C. Greubel_, Feb 18 2021 %Y A118353 Cf. A118350, A118351, A118352, A118354. %K A118353 nonn %O A118353 0,2 %A A118353 _Paul D. Hanna_, Apr 26 2006