This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118354 #10 Feb 18 2021 14:16:10 %S A118354 1,1,0,1,1,0,1,2,6,0,1,3,13,42,0,1,4,21,96,325,0,1,5,30,163,770,2688, %T A118354 0,1,6,40,244,1353,6530,23286,0,1,7,51,340,2093,11760,57612,208659,0, %U A118354 1,8,63,452,3010,18636,105681,523446,1918314,0,1,9,76,581,4125,27441,170580,973953,4864795,17994264,0 %N A118354 Convolution triangle, read by rows, where diagonals are successive self-convolutions of A118351. %C A118354 A118351 equals the central terms of pendular triangle A118350 and the lower diagonals of this triangle form the semi-diagonals of the triangle A118350. %H A118354 G. C. Greubel, <a href="/A118354/b118354.txt">Rows n = 0..100 of the triangle, flattened</a> %F A118354 Since g.f. G=G(x) of A118351 satisfies: G = 1 - 3*x*G + 3*x*G^2 + x*G^3 then %F A118354 T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1). %F A118354 Recurrence involving antidiagonals: %F A118354 T(n,k) = T(n-1,k) + Sum_{j=1..k} [4*T(n-1+j,k-j) - 3*T(n-2+j,k-j)] for n>k>=0. %e A118354 Show: T(n,k) = T(n-1,k) - 3*T(n-1,k-1) + 3*T(n,k-1) + T(n+1,k-1) %e A118354 at n=8,k=4: T(8,4) = T(7,4) - 3*T(7,3) + 3*T(8,3) + T(9,3) %e A118354 or: 2093 = 1353 - 3*244 + 3*340 + 452. %e A118354 Triangle begins: %e A118354 1; %e A118354 1, 0; %e A118354 1, 1, 0; %e A118354 1, 2, 6, 0; %e A118354 1, 3, 13, 42, 0; %e A118354 1, 4, 21, 96, 325, 0; %e A118354 1, 5, 30, 163, 770, 2688, 0; %e A118354 1, 6, 40, 244, 1353, 6530, 23286, 0; %e A118354 1, 7, 51, 340, 2093, 11760, 57612, 208659, 0; %e A118354 1, 8, 63, 452, 3010, 18636, 105681, 523446, 1918314, 0; %e A118354 1, 9, 76, 581, 4125, 27441, 170580, 973953, 4864795, 17994264, 0; ... %t A118354 T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==n, 0, T[n-1, k] -3*T[n-1, k-1] +3*T[n, k-1] +T[n+1, k-1]]]; %t A118354 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 18 2021 *) %o A118354 (PARI) {T(n,k)=polcoeff((serreverse(x*(1-3*x+sqrt((1-3*x)*(1-7*x)+x*O(x^k)))/2/(1-3*x))/x)^(n-k),k)} %o A118354 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) %o A118354 (Sage) %o A118354 @CachedFunction %o A118354 def T(n, k): %o A118354 if (k==0): return 1 %o A118354 elif (k==n): return 0 %o A118354 else: return T(n-1, k) - 3*T(n-1, k-1) + 3*T(n, k-1) + T(n+1, k-1) %o A118354 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 18 2021 %Y A118354 Cf. A118350, A118351, A118352, A118353. %Y A118354 Row sums: A151616. %K A118354 nonn,tabl %O A118354 0,8 %A A118354 _Paul D. Hanna_, Apr 26 2006