cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118376 Number of all trees of weight n, where nodes have positive integer weights and the sum of the weights of the children of a node is equal to the weight of the node.

This page as a plain text file.
%I A118376 #82 Feb 20 2025 10:22:59
%S A118376 1,2,6,24,112,568,3032,16768,95200,551616,3248704,19389824,117021824,
%T A118376 712934784,4378663296,27081760768,168530142720,1054464293888,
%U A118376 6629484729344,41860283723776,265346078982144,1687918305128448,10771600724946944,68941213290561536
%N A118376 Number of all trees of weight n, where nodes have positive integer weights and the sum of the weights of the children of a node is equal to the weight of the node.
%C A118376 The number of trees with leaf nodes equal to 1 is counted by the sequence A001003 of super-Catalan numbers. The number of binary trees is counted by the sequence A007317 and the number of binary trees with leaf nodes equal to 1 is counted by the sequence A000108 of Catalan numbers.
%C A118376 Also the number of series-reduced enriched plane trees of weight n. A series-reduced enriched plane tree of weight n is either the number n itself or a finite sequence of at least two series-reduced enriched plane trees, one of each part of an integer composition of n. For example, the a(3) = 6 trees are: 3, (21), (12), (111), ((11)1), (1(11)). - _Gus Wiseman_, Sep 11 2018
%C A118376 Conjectured to be the number of permutations of length n avoiding the partially ordered pattern (POP) {1>2, 1>3, 3>4, 3>5} of length 5. That is, conjectured to be the number of length n permutations having no subsequences of length 5 in which the first element is the largest, and the third element is larger than the fourth and fifth elements. - _Sergey Kitaev_, Dec 13 2020
%C A118376 This conjecture has been proven. It can be restated as the number of size n permutations avoiding 51423, 51432, 52413, 52431, 53412, 53421, 54312, 54321. There are twelve sets of permutations avoiding eight size five permutations that are known to match this sequence. A further four are conjectured to match this sequence. - _Christian Bean_, Jul 24 2024
%H A118376 G. C. Greubel, <a href="/A118376/b118376.txt">Table of n, a(n) for n = 1..1000</a>
%H A118376 Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, <a href="https://permpal.com/perms/search_params/?we_type=cfs&amp;wilf_equivalence=01234%2C+01243%2C+02134%2C+02143%2C+02314%2C+02341%2C+02413%2C+02431">PermPAL database</a>.
%H A118376 Paul Barry, <a href="https://arxiv.org/abs/1803.10297">Generalized Eulerian Triangles and Some Special Production Matrices</a>, arXiv:1803.10297 [math.CO], 2018.
%H A118376 Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, <a href="https://doi.org/10.37236/12686">Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding</a>, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); <a href="https://arxiv.org/abs/2312.07716">arXiv preprint</a>, arXiv:2312.07716 [math.CO], 2023.
%H A118376 Hadrien Cambazard and Nicolas Catusse, <a href="http://arxiv.org/abs/1512.06649">Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane</a>, arXiv preprint arXiv:1512.06649 [cs.DS], 2015.
%H A118376 S. B. Ekhad and M. Yang, <a href="http://sites.math.rutgers.edu/~zeilberg/tokhniot/oMathar1maple12.txt">Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences</a>, (2017).
%H A118376 Alice L. L. Gao and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019.
%H A118376 Alice L. L. Gao and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
%H A118376 Pawel Hitczenko, Jeremy R. Johnson, and Hung-Jen Huang, <a href="http://dx.doi.org/10.1016/j.tcs.2005.09.074">Distribution of a class of divide and conquer recurrences arising from the computation of the Walsh-Hadamard transform</a>, Theoretical Computer Science, Vol. 352, 2006, pp. 8-30.
%H A118376 J. R. Johnson and M. Püschel, <a href="https://citeseerx.ist.psu.edu/pdf/4bfadc40a98b912820a61e9a307ef163130f8be1">In search for the optimal Walsh-Hadamard transform</a>, Proc. ICASSP, Vol. 4, 2000, pp. 3347-3350.
%H A118376 Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.
%F A118376 Recurrence: T(1) = 1; For n > 1, T(n) = 1 + Sum_{n=n1+...+nt} T(n1)*...*T(nt).
%F A118376 G.f.: (-1+(1-8*z+8*z^2)^(1/2))/(-4+4*z).
%F A118376 From _Vladimir Kruchinin_, Sep 03 2010: (Start)
%F A118376 O.g.f.: A(x) = A001003(x/(1-x)).
%F A118376 a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A001003(k), n>0. (End)
%F A118376 D-finite with recurrence: n*a(n) + 3*(-3*n+4)*a(n-1) + 4*(4*n-9)*a(n-2) + 8*(-n+3)*a(n-3) = 0. - _R. J. Mathar_, Sep 27 2013
%F A118376 a(n) ~ sqrt(sqrt(2)-1) * 2^(n-1/2) * (2+sqrt(2))^(n-1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 03 2014
%F A118376 From _Peter Bala_, Jun 17 2015: (Start)
%F A118376 With offset 0, binomial transform of A001003.
%F A118376 O.g.f. A(x) = series reversion of x*(2*x - 1)/(2*x^2 - 1); 2*(1 - x)*A^2(x) - A(x) + x = 0.
%F A118376 A(x) satisfies the differential equation (x - 9*x^2 + 16*x^3 - 8*x^4)*A'(x) + x*(3 - 4*x)*A(x) + x*(2*x - 1) = 0. Extracting coefficients gives Mathar's recurrence above. (End)
%F A118376 a(n) = Sum_{j=0..(n-1)/2} (-1)^j*2^(n-j-1)*C(n,j)*C(2*n-2*j-2,n-2*j-1)/n. - _Vladimir Kruchinin_, Sep 29 2020
%e A118376 T(3) = 6 because there are six trees
%e A118376   3    3      3     3     3       3
%e A118376       2 1    2 1   1 2   1 2    1 1 1
%e A118376             1 1           1 1
%e A118376 From _Gus Wiseman_, Sep 11 2018: (Start)
%e A118376 The a(4) = 24 series-reduced enriched plane trees:
%e A118376   4,
%e A118376   (31), (13), (22), (211), (121), (112), (1111),
%e A118376   ((21)1), ((12)1), (1(21)), (1(12)), (2(11)), ((11)2),
%e A118376   ((111)1), (1(111)), ((11)(11)), ((11)11), (1(11)1), (11(11)),
%e A118376   (((11)1)1), ((1(11))1), (1((11)1)), (1(1(11))).
%e A118376 (End)
%p A118376 T := proc(n) option remember; local C, s, p, tp, k, i; if n = 1 then return 1; else s := 1; for k from 2 to n do C := combinat[composition](n,k); for p in C do tp := map(T,p); s := s + mul(tp[i],i=1..nops(tp)); end do; end do; end if; return s; end;
%t A118376 Rest[CoefficientList[Series[(Sqrt[1-8*x+8*x^2]-1)/(4*x-4), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Feb 03 2014 *)
%t A118376 a[n_] := 1+Sum[Binomial[n-1, k-1]*Hypergeometric2F1[2-k, k+1, 2, -1], {k, 2, n}]; Table[a[n], {n, 1, 20}] (* _Jean-François Alcover_, Apr 03 2015, after _Vladimir Kruchinin_ *)
%t A118376 urp[n_]:=Prepend[Join@@Table[Tuples[urp/@ptn],{ptn,Join@@Permutations/@Select[IntegerPartitions[n],Length[#]>1&]}],n];
%t A118376 Table[Length[urp[n]],{n,7}] (* _Gus Wiseman_, Sep 11 2018 *)
%o A118376 (PARI) x='x+O('x^25); Vec((sqrt(1-8*x+8*x^2) - 1)/(4*x-4)) \\ _G. C. Greubel_, Feb 08 2017
%o A118376 (Maxima) a(n):=sum((-1)^j*2^(n-j-1)*binomial(n,j)*binomial(2*n-2*j-2,n-2*j-1),j,0,(n-1)/2)/n; /* _Vladimir Kruchinin_, Sep 29 2020 */
%Y A118376 Cf. A000108, A000311, A001003, A005804, A007317, A007853, A032171, A032200, A143363, A289501, A317852.
%K A118376 nonn
%O A118376 1,2
%A A118376 Jeremy Johnson (jjohnson(AT)cs.drexel.edu), May 15 2006