cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118384 Gaussian column reduction of Hankel matrix for central Delannoy numbers.

This page as a plain text file.
%I A118384 #43 Jan 24 2025 08:50:39
%S A118384 1,3,1,13,6,1,63,33,9,1,321,180,62,12,1,1683,985,390,100,15,1,8989,
%T A118384 5418,2355,720,147,18,1,48639,29953,13923,4809,1197,203,21,1,265729,
%U A118384 166344,81340,30744,8806,1848,268,24,1,1462563,927441,471852,191184,60858
%N A118384 Gaussian column reduction of Hankel matrix for central Delannoy numbers.
%C A118384 First column is central Delannoy numbers A001850. Second column is A050151.
%H A118384 Johann Cigler, <a href="https://arxiv.org/abs/1611.05252">Some elementary observations on Narayana polynomials and related topics</a>, arXiv:1611.05252 [math.CO], 2016. See p. 19.
%H A118384 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/PEART/peart1.html">Generating Functions via Hankel and Stieltjes Matrices</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
%H A118384 P. Peart and W.-J. Woan, <a href="http://dx.doi.org/10.1016/S0166-218X(99)00166-3">A divisibility property for a subgroup of Riordan matrices</a>, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
%H A118384 W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WOAN/hankel2.html">Hankel Matrices and Lattice Paths</a>, J. Integer Sequences, 4 (2001), #01.1.2.
%H A118384 Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, <a href="https://doi.org/10.1016/j.disc.2017.07.006">Some matrix identities on colored Motzkin paths</a>, Discrete Mathematics 340.12 (2017): 3081-3091.
%F A118384 Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*C(j,n-k-j)*2^(n-k-j)*3^(2*j-(n-k));
%F A118384 Riordan array (1/sqrt(1-6*x+x^2), (1-3*x-sqrt(1-6*x+x^2))/(4*x));
%F A118384 Column k has e.g.f. exp(3*x)*Bessel_I(k,2*sqrt(2)x)/(sqrt(2))^k.
%F A118384 a(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(n,n-k-i)*2^i, also a(n+1,k+1) = a(n,k) + 3*a(n,k+1) + 2*a(n,k+2). - _Emanuele Munarini_, Mar 16 2011
%F A118384 From _Peter Bala_, Jun 29 2015: (Start)
%F A118384 Matrix product A110171 * A007318.
%F A118384 Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 3*x - sqrt(1 - 6*x + x^2) )/(4*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan, Jan 2000, Example 5.2).
%F A118384 T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + 3*x + 2*x^2. In general the (n,k)-th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
%e A118384 Triangle begins:
%e A118384      1,
%e A118384      3,     1,
%e A118384     13,     6,     1,
%e A118384     63,    33,     9,     1,
%e A118384    321,   180,    62,    12,    1,
%e A118384   1683,   985,   390,   100,   15,   1
%t A118384 Table[Sum[Binomial[n,i]Binomial[n,n-k-i]2^i,{i,0,n-k}],{n,0,8},{k,0,8}]//MatrixForm
%o A118384 (Maxima) create_list(sum(binomial(n,i)*binomial(n,n-k-i)*2^i,i,0,n),n,0,8,k,0,n);
%Y A118384 Cf. A110171, A376467.
%K A118384 easy,nonn,tabl
%O A118384 0,2
%A A118384 _Paul Barry_, Apr 26 2006