This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A118384 #43 Jan 24 2025 08:50:39 %S A118384 1,3,1,13,6,1,63,33,9,1,321,180,62,12,1,1683,985,390,100,15,1,8989, %T A118384 5418,2355,720,147,18,1,48639,29953,13923,4809,1197,203,21,1,265729, %U A118384 166344,81340,30744,8806,1848,268,24,1,1462563,927441,471852,191184,60858 %N A118384 Gaussian column reduction of Hankel matrix for central Delannoy numbers. %C A118384 First column is central Delannoy numbers A001850. Second column is A050151. %H A118384 Johann Cigler, <a href="https://arxiv.org/abs/1611.05252">Some elementary observations on Narayana polynomials and related topics</a>, arXiv:1611.05252 [math.CO], 2016. See p. 19. %H A118384 P. Peart and W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/PEART/peart1.html">Generating Functions via Hankel and Stieltjes Matrices</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.1. %H A118384 P. Peart and W.-J. Woan, <a href="http://dx.doi.org/10.1016/S0166-218X(99)00166-3">A divisibility property for a subgroup of Riordan matrices</a>, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263. %H A118384 W.-J. Woan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WOAN/hankel2.html">Hankel Matrices and Lattice Paths</a>, J. Integer Sequences, 4 (2001), #01.1.2. %H A118384 Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, <a href="https://doi.org/10.1016/j.disc.2017.07.006">Some matrix identities on colored Motzkin paths</a>, Discrete Mathematics 340.12 (2017): 3081-3091. %F A118384 Number triangle T(n,k) = Sum_{j=0..n} C(n,j)*C(j,n-k-j)*2^(n-k-j)*3^(2*j-(n-k)); %F A118384 Riordan array (1/sqrt(1-6*x+x^2), (1-3*x-sqrt(1-6*x+x^2))/(4*x)); %F A118384 Column k has e.g.f. exp(3*x)*Bessel_I(k,2*sqrt(2)x)/(sqrt(2))^k. %F A118384 a(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(n,n-k-i)*2^i, also a(n+1,k+1) = a(n,k) + 3*a(n,k+1) + 2*a(n,k+2). - _Emanuele Munarini_, Mar 16 2011 %F A118384 From _Peter Bala_, Jun 29 2015: (Start) %F A118384 Matrix product A110171 * A007318. %F A118384 Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - 3*x - sqrt(1 - 6*x + x^2) )/(4*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan, Jan 2000, Example 5.2). %F A118384 T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + 3*x + 2*x^2. In general the (n,k)-th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End) %e A118384 Triangle begins: %e A118384 1, %e A118384 3, 1, %e A118384 13, 6, 1, %e A118384 63, 33, 9, 1, %e A118384 321, 180, 62, 12, 1, %e A118384 1683, 985, 390, 100, 15, 1 %t A118384 Table[Sum[Binomial[n,i]Binomial[n,n-k-i]2^i,{i,0,n-k}],{n,0,8},{k,0,8}]//MatrixForm %o A118384 (Maxima) create_list(sum(binomial(n,i)*binomial(n,n-k-i)*2^i,i,0,n),n,0,8,k,0,n); %Y A118384 Cf. A110171, A376467. %K A118384 easy,nonn,tabl %O A118384 0,2 %A A118384 _Paul Barry_, Apr 26 2006